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will this all be done?

= Lectures:
« 2x15hours lectures per week ... all the nice stuff
Tuesday 12:00 & Friday 11:00 (all live on-line)
w Laboratories:

* 3hours per week ... all the rough and action stuff
time slots: on our web-site
https://cs.anu.edu. (open since last Monday, more slots today)

= Resources:
+ Introduced in the lectures and collected on the course page:
https://cs.anu.edu.au/courses/comp2310/ .. as well as schedules, slides,
sources, links to forums, etc. pp. ... keep an eye on this page!

w Assessment (for discussion):
« Exam at the end of the course (50%)
plus one hurdle lab in week 4 (5%)
plus two assignments (15% + 15%)
plus one mid-semester exam (15%)
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Text book for the course

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711621-X

w Many algorithms and concepts for the course are in there

& References for specific aspects of the course are provided
during the course and are found on our web-site.
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could be interested in this?

anybody who ...
... wants to work with real-world scale computer systems

... would like to learn how to
analyse and design operational and robust systems

... would like to understand more about the existing trade-off between
theory, the real-world, traditions, and pragmatism in computer science

... would like to understand why concurrent systems are
an essential basis for most contemporary devices and systems
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References for this chapter

[Ada 2012 Language Reference Manual]
see course pages or http://www.ada-auth.org/standards/ada 12.html

[Chapel 1.13 Language Specification Version 0.981]
see course pages or
http://chapel.cray.com/docs/latest/_downloads/chapelLanguageSpec.pdf
released on 7. April 2016
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Data structure example Data structure example

Queues Queues

Forms of implementation:

Forms of implementation:

Ring lists | Amost
e impossible
for real-time
systems
Potentially suited for
tems if distribated storage
and memory can be pr
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A simple queue A simple queue

Variables should be initialized
Constants must be initialized. |

Queue_Pack_Simple is Queue_Pack_Simple is
Queuesize

Queuesize Positive := 10; E
type Element  is Positive 1.000. .40_000; \ type Element  is
type Marker s mod QueueSize; type Marker  is
type List is array (Marker) of Element;

Positive := 10;
Positive 1.000. .40_000;
Queuesize;
is array (Marker) of Element; Assignments are denoted
by the “:=" symbol.
leaving the “=" symbol
for comparisons.

type List
Specifications define an interface to
provided types and operations.
Syntactically enclosed
in a package block. ey
- - - end record;

type Queue_Type is record Queue_Type is record

Top, Free : Marker
Is_Empty True;
Elements -

end record;
Queue_Type);

Queue_Type);

Element; Queue
Element; Queue

procedure Enqueue (Item:

Element; Queue
procedure Dequeue (Iten:

Element; Queue

procedure Enqueue (Item:
procedure Dequeue (tem:

Queue_Type); /
Queue_Type);
function Is_Empty (Queue : Queue_Type) Boolean;

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean; function Is_Full (Queue : Queue_Type) Boolean;
end Queue_Pack_Simple; end Queue_Pack_Simple;
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A simple queue A simple queue

Queue_Pack_Simple is

Queue_Pack_Simple is
Positive := 10;

Positive := 10; Queuesize
type Element  is new Positive
type Marker  is mod QueueSize;
type List is array (Marker) of Element;

Queuesize :
type Element  is new Positive 1.000..40_000; 1.000. .40_000;
type Marker s mod QueueSize;

type List is array (Marker) of Element; Alltypes come with a long

list of built-in attributes. type Queue_Type is

Top, Free : Marker := Marker
Is_Empty : Boolean := True;
Elements : List;

end record;

type Queue_Type is record
Top, Free : Marker :=
Is_Empty : Boolean
Elements : List;

end record;

Let the compiler fill in what you
already (implicitly) specified! |

Queue_Type);
Queue_Type);

Element; Queue.
Element; Queue:

procedure Enqueue (Item:

Queue_Type);
procedure Dequeue (Item:

Queue_Type);

Element; Queue
Element; Queue

procedure Enqueue (Item
procedure Dequeue (Item:
function Is Empty (Queue : Queue_Type)
function Is_Full (Queue : Queue_Type) Boolean; asin’ (defaul),
end Queue_Pack_Simple; ‘out’
or'in out"

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple;

Boolean; | p)ameters can be passed |

]
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Languages explicitly supporting concurrency: e.g. Ada

Adais an (ISO/EC 8652:201x(E)) ‘general purpose’
language with focus on “program reliability and maintenance,
programming as a human activity, and efficiency”.
It provides for.
Strong typing, contracts, separate compilation (specification and implementation),
abstract data types, generics, object-orientation.

Concurrency, message passing, synchronization, monitors, rpcs, timeouts, scheduling,
priority ceiling locks, hardware mappings, fully typed network communication.

Strong run-time environments (incl. stand-alone execution).

as well as for:

Additional real-time features, p
numeric, informations systems, safety and security

Language refresher / introduction course

Ada
Basics

. introducing:
* Specification and implementation (body) parts
 Constants
¢ Some basic types (integer specifics)
* Some type attributes
 Parameter specification

— e |
||
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A simple queue

Queue_Pack_Simple is
Positive

type Element  is new Positive 1_000..40_000;
type Marker is mod QueueSize;

type List is array (Marker) of Element;

QueueSize :

Default initializations can
type Queue_Type is record be selected to be:
= Marker asis (random memory content),
=ATiue; initialized to invalids, e.g. 999
Elements
end record; N
Queue_Type);
Queue_Type) ;

Element; Queue:
Elenent; Queue

procedure Enqueue (Item
procedure Dequeue (Item
Queue_Type) Boolean;
Queue_Type) Boolean;

function Is_Empty (Queut
function Ts_Full (Queut

end Queue_Pack_Simple;

| or valid, predicable values, e.¢.1.000 |
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A simple queue

Queue_Pack_Simple is
Queuesize Positive := 10;
type Element  is new Positive 1_000. .40_000;
type Marker  is mod QueueSize;

type List is array (Marker) of Element; All specifications are used in

type Queue_Type is record
Top, Free : Marker := Marker
Is_Empty : Boolean := True;
Elements : List;

end record; -

Element; Queue Queue_Type);

Element; Queue Queue_Type) ;

Code optimizations (optional),
Compile time checks (mandatory)

procedure Enqueue (Item
procedure Dequeue (Item

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple;

Run-time checks (suppressible). |
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Ada
A crash course

. refreshing for some, x'th-language introduction for others:

« Specification and implementation (body) parts, basic types
« Exceptions
Information hiding in specifications (‘private’)
* Contracts
Generic programming (polymorphism)
« Tasking
* Monitors and synchronisation (‘protected’ ‘entries’, ‘selects, ‘accepts’)
« Abstract types and dispatching

Not mentioned here: general object orientation, dynamic memory management,
foreign language interfaces, marshalling, basics of imperative programming,
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A simple queue

Queue_Pack_Simple is
Queuesize Positive := 10;
type Element s new Positive 1_000..40_000;
type Marker s mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record

Top, Free : Marker := Marker

Is_Empty : Boolean := True;

Elements : List;
end record;
Queue_Type);
Queue_Type);

Element; Queue:
Element; Queue:

procedure Enqueue (Item
procedure Dequeue (Item

function Is_Empty (Queue : Queue_Type) Boolean;
function Ts_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple;

TEa
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A simple queue

Queue_Pack_Simple is
Queuesize Positive := 10;
type Element  is Positive
type Marker is mod QueueSize;
type List is array (Marker) of Element;

1.000. .40_000;

Numerical types
type Queue_Type is record can be specified by:
= Marker range, modulo,
= True; number of digits (= floating point)
or delta increment (s fixed point)

Elenents
end record; S—
Element; Queue: Queue_Type);
Element; Queue: Queue_Type);

procedure Enqueue (Item
procedure Dequeue (Item

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;

end Queue_Pack_Simple;

Always be as specific as
the language allows.

e
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A simple queue

Queue_Pack_Sinple is
Queuesize Positive := 10;
type Element  is new Positive
type Marker s mod QueueSize;
type List is array (Marker) of Element;

1.000. .40_000;

type Queue_Type is record
Top, Free : Marker := Marker
Is_Empty : Boolean := True;
Elements : List;

end record;

Queue_Type);
Queue_Type);

Element; Queue.
Element; Queue:

procedure Enqueue (Item
procedure Dequeue (Item

function Is_Empty (Queue : Queue_Type) Boolean;
function Is_Full (Queue : Queue_Type) Boolean;  anything on this slide
end Queue_Pack_Simple; Il not perfectly clear?

and don't repeat vourselfj
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A simple queue
Queue_Pack_Simple is
procedure Enqueve (Item: Element; Queue: Queue_Type) is
begin
Queue.Elements (Queue.Free) := Item;
Queue.Free = Queue.Free
Queue.Is_Empty = False;
end Enqueue;
procedure Dequeue (Item: out Element; Queue Queue_Type) is
Queue.Elements (Queue.Top);
Queue.Top Queue.Top  ';
Queue.Is_Enpty := Queue.Top = Queue.Free;
end Dequeue;
function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Is_Empty ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free
end Queue_Pack_Simple;

F
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A simple queue
Queue_Pack_Simple is

procedure Enqueue (Item: Element; Queue Queue_Type) is
begin

Queve Elements (Queue.Free) := Item;

Queue.Free = Queue.Free

Queue.Is_Empty = False;
end Enqueue;
procedure Dequeve (Item: Elenent; Queue Queue_Type) is
begin

Iten Queue.Elements (Queue.Top);

Queue.Top = Queue.Top  ';

Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeue;

Side-effect free,
single expression functions
can be expressed with-
out begin-end blocks.

function Is_Empty (Queue : Queue_Type) return Boolean is
Queue. Is_Empty ;

function Is_Full (Queue : Queue_Type) return Boolean is

not Queue.Is_Empty and then Queue.Top = Queue.Free ;
_simple

end Queue_Pack

Language refresher / introduction course

A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple;

procedure Queue_Test_Simple is A top level procedure is read as the

Queue : Queue_Type;
Item : Element;

begin
Enqueue (2000, Queue)
Dequeue (Item, Queue)
Dequeue (Item, Queue)

end Queue_Test_Simple;

code which needs to be executed. |

. =
o]
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A simple queue
Queve_Pack_Simple is
procedure Enqueue (Item: Element; Queue Queue_Type) is
begin
Queue.Elements (Queue.Free) := Item;
Queue. Free Queue.Free
Queue. Is_Empty False;
end Enqueue;
procedure Dequeue (Item: Elenent; Queue Queue_Type) is
Implementations are
defined in a separate file.
Syntactically enclosed in
apackage body block.

= Queue.Elements (Queue.Top);
Queue. Top = Queue.Top « ;
Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Ts_Enpty ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;
end Queue_Pack_Simple;

=
e
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A simple queue
Queue_Pack_Simple is
procedure Enqueue (Item: Element; Queue Queue_Type) is
begin
Queue Elements (Queue.Free)
Queue.Free
Queue. Is_Empty
end Enqueue;
procedure Dequeue (Item: Elenent; Queue Queue_Type) is
begin
Item := Queue.Elements (Queue.Top);
Queue.Top := Queue.Top  ';
Queue.Is_Enpty := Queue.Top = Queue.Free;
end Dequeue;
function Is_Empty (Queue : Queue_Type) return Boolean is
Queue. Ts_Empty ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;

anything on this slide
still not perfectly clear?

end Queue_Pack_Simple;

Language refresher / introduction course
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Ada
Exceptions
. introducing:

* Exception handling
* Enumeration types
* Type attributed operators

A simple queue test

Queue_Pack_Simple; Queue_Pack_Sinple;
procedure Queue_Test_Simple is
Variables are declared Algol style:

Queue : Queue_Type;
“Itemis of type Element”.

Ttem : Element;
begin -
Enqueue (2000, Queue);
Dequeue (Ttem, Queue);
Dequeue (Item, Queue);
end Queve_Test_Simple;

A queue with proper exceptions
package Queue_Pack_Exceptions is
QueueSize : constant Positive := 10;

type Element s ;
type Marker is mod QueueSize;
type List s array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Ttem: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
Queue_overflow, Queue_underflow ;
end Queue_Pack_Exceptions;

]
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A simple queue
Queue_Pack_simple is
procedure Enqueue (Ttem: Element; Queue Queue_Type) is
begin
Queue.Elements (Queue.Free) := Item;
Queue.Free Queue.Free
Queue. Is_Enpty False;
end Enqueue;
procedure Dequeue (Item Element; Queue Queue_Type) is
begin
Iten Queue.Elements (Queue.Top);
Queue.Top := Queue.Top  ;
Queue. Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
function Is_Empty (Queue : Queue_Type) return Boolean is
Queue. Is_Empty  ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Is_Empty and then Queue.Top = Queue.Free ;

Modulo type, hence no
index checks required

end Queue_Pack_Simple;

Language refresher / introduction course

A simple queue test

Queue_Pack_Simple; Queue_Pack_Simple;

procedure Queue_Test_Simple is
Queue : Queue_Type;
Iten : Element;

begin
Enqueue (2000, Queue);
Dequeue (Ttem, Queue);
Dequeue (Item, Queue);

end Queue_Test_Simple;

— e |
||
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A simple queue test

Queue_Pack_Simple; use Queue_Pack_Simple;
procedure Queue_Test_Simple is
Will produce a result according
to the chosen initialization:
Raises an “invalid data” exception
if initialized to invalids.

Queue : Queue_Type;

Ttem : Element;
begin

Enqueue (2000, Queue);

Dequeue (Ttem, Queue);

Dequeue (Ttem, Queue);
end Queue_Test_Simple;

hmm, ok ... so this was rubbish ...

A queue with proper exceptions

package Queue_Pack_Exceptions is
QueueSize : constant Positive := 1

Enumeration types are first-

class types and can be used
e.g. as array indices.

type Element  is ;
type Marker is mod QueueSize;

e is arra ¢
type List v (Marker) of Element; | pp.; representation values can be

controlled and do not need to
be continuous (e.g. for purposes

type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List; L

end record;

procedure Enqueue (Item Element; Queue: in out Queue_Type);

procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.ls_Empty);

function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Ts_Empty and then Queue.Top = Queue.Free);

Queue_overflow, Queue_underflow

end Queue_Pack_Exceptions;

like interfacing with hardware). |

| o

Language refresher / introduction course

A simple queue
Queue_Pack_simple is
procedure Enqueue (Ttem: Element; Queue Queue_Type) is
begin
Queue.Elements (Queue.Free) := Item;
Queue.Free Queue.Free
Queue. Is_Empty False;
end Enqueue;
procedure Dequeue (Item Element; Queue: Queue_Type) is
begin
Tten Queue.Elements (Queue.Top);
Queue.Top Queue.Top —;
Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeu
function Is_Empty (Queue : Queue_Type) return Boolean is
Queue.Ts_Enpty ;
function Is_Full (Queue : Queue_Type) return Boolean is
not Queue.Ts_Empty and then Queue.Top = Queue.Free ;

end Queue_Pack_Simple;

Bostean expressions |

Fe
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A simple queue test

Importing items from other packages

Queue_Pack_Simple; Queue_Pack_Simple; is done with wi th-clauses.

procedure Queue_Test_Simple is

Queue : Queue_Type;
Item : Element;

begin
Enqueue (2000, Queue);
Dequeue (Ttem, Queue);
Dequeue (Item, Queue);

end Queue_Test_Simple;

use-clauses allow to use names with
qualifying them with the package name.

Language refresher / introduction course

A simple queue test

Queue_Pack_Sinple; Queue_Pack_Simple;

procedure Queue_Test_Simple is

Queue : Queue_Type;
Ttem : Element;
begin
Enqueue (2000, Queue);
Dequeue (Ttem, Queue);
Dequeue (Item, Queue);
end Queue_Test_Simple;

anything on this slide
still not perfectly clear?

A queue with proper exceptions
package Queue_Pack_Exceptions is
QueueSize : constant Positive := 10;

type Element  is 5
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record Nothing else changes
Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
procedure Enqueue (Item Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.ls_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
Queue_overflow, Queue_underflow : B

end Queue_Pack_Exceptions;

in the specifications.

Exceptions need (o be declared. |




A queue with proper exceptions

package Queue_Pack_Exceptions is
QueueSize : constant Positive
type Element  is
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record

Toy Marker := Marker’First;
: Boolean := True;

end record;
procedure Enqueue (Item Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.ls_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is

(not Queue.Is_Empty and then Queue.Top = Queue.Free);

Queue_overflow, Queue_underflow :

end Queue_Pack_Exceptions;

A queue with proper exceptions
package body Queue_Pack_Exceptions is
procedure Enqueve (Item : Element; Queue : in out Queve_Type) is
begin
if Is_Full (Queue) then
Queue_overflow;
end if;
Queue.Elements (Queve.Free) := Item
Queue. Free = MarkerSucc (Queue.Free);
Queue.Ts_Enpty := False;
end Enqueue;
procedure Dequeue (Item : out Element; Queve
begin
if Is_Empty (Queue) then
Queue_underflow;

in out Queue_Type) is

end if;

Item = Queue.Elements (Queue.Top);
= Marker’Succ (Queue.Top);
= Queue.Top = Queue.Free;

end Dequeue;

end Queue_Pack_Exceptions;

A queue with proper exceptions
package Queue_Pack_Exceptions is
QueueSize : constant Positive

10,

type Element  is
type Marker is mod QueueSize;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;
procedure Enqueue (Item Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.ls_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Ts_Empty and then Queue.Top = Queue.Free);
Queue_overflow, Queue_underflow ;

end Queue_Pack_Exceptions;

A queue with proper information hiding

package Queue_Pack_Private is
QueueSize : constant Integer := 10;
type Element is new Positive range 1..1000;

to access its internal structure.
type Queue_Type is - - — —

procedure Enqueue (Item: Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;

function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;

Linited disables assignments and

type Marker is mod QueueSize; comparisons for this type.

type List is array (Marker) of Element;
i G s o S A user of this package would
e e now e.g. not be able to make a
True; : copy of a Queue_Type value.
Elements e
end record;

end Queue_Pack_Private;

anything on this slide
still not perfectly clear?

anything on this slide
still not perfectly clear?

This package provides access to
‘internal’structures which can
lead to inconsistent access.

Queue_Type can now be used out-
side this package without any way

|

A queue with proper exceptions
package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue : in out Queue_Type) is
begin
if Is_Full (Queue) then
Queue_overflow;
end if;
Queue.Elements (Queue.Free) := Item;
[ Marker”Succ (Queue.Free);
Queue.Is_Empty := False;
end Enqueue;

procedure Dequeue (Item : out Element; Queue : in out Queue_Type)
begin
if Is_Empty (Queue) then
Queue_underflow;

end if;
Item Queue. Elements (Queue.Top);
Queue. Top Marker’Succ (Queue.Top);
Queue. Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
end Queue_Pack_Exceptions;

A queue test with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_10 ; use Ada.Text_T0;
procedure Queue_Test_Exceptions is
Queue : Queue_Type;
Ttem : Element;
begin
Enqueue (Turn, Queue);
Dequeue (Item, Queue);
Dequeue (Ttem, Queue); -- will produce a Queue_underflow exception

Queue_underflow => Put (“Queue underflow”);
Queue_overflow => Put (“Queue overflow”);
end Queue_Test_Exceptions;

=]
e
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Ada
Information hiding

. introducing:
e Private declarations
ww needed to compile specifications,
yet not accessible for a user of the package.
 Private types 1= assignments and comparisons are allowed
* Limited private types w entity cannot be assigned or compared

A queue

package Queue_Pack_Private is

with proper information hiding

Queue_Type can now be used out-
side this package without any way
to access its internal structure.

QueueSize : constant Integer := 10;

type Element is new Positive range 1..1000;
type Queue_Type is ;
procedure Enqueue (Item: Element; Queue: in out Queue_Type);

procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

function Is_Empty (Queue : Queue_Type) return Boolean;

function Is_Full (Queue : Queue_Type) return Boolean;

Queueoverflow, Queueunderflow : exception;

Alternatively ‘=" and =" operations
can be replaced with type-specific
versions (overloaded) or default
operations can be allowed

type Marker is mod QueueSize;

type List is array (Marker) of Element;

type Queue_Type is record
MarkerFirst;

Elements
end record;

end Queue_Pack_Private;

A queue with proper exceptions
package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue : in out Queue_Type) is
begin
if Is_Full (Queue) then
Queue_overflow;

Raised exceptions break the control

end flow and “propagate” to the closest

Queue.Elements (Queue.Free) := Item;
Queue.Free Marker”Succ (Queue.Free);
Queue.Is_Empty := False;

end Enqueue;

procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is
begin
if Is_Empty (Queue) then
Queue_underlow;
end if;
Iten := Queue.Elements (Queue.Top);
Queue. Top Marker’Succ (Queue.Top);
Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
end Queue_Pack_Exceptions;

A queue test with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_I0 ; use Ada.Text_T0;
procedure Queue_Test_Exceptions is

Queue : Queue_Type; An exception handler has a choice |
Item Element;

to handle, pass, or re-raise the

begin same or a different exception.

Enqueue (Turn, Queue);
Dequeue (Item, Queue);
Dequeue (Ttem, Queue); -- will produce a Queue_underflow exception

_

Queve_underflow => Put (“Queue underflow");| Raised exceptions break the control
Queue_overflow => Put (“Queue overflow”); | flow and “propagate” to the closest
end Queue_Test_Exceptions;

Control flow is continued after the exception handler
in case of a handled exception

A queue with proper information hiding

package Queue_Pack_Private is
QueueSize : constant Integer := 10;
type Element is new Positive range 1..1000;
type Queue_Type is ;
procedure Enqueue (Item Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;

type Marker is mod QueueSize;

type List is array (Marker) of Element;

type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;

end record;

end Queue_Pack_Private;

A queue with proper information hiding

package Queue_Pack_Private is
QueueSize : constant Integer := 10;
type Element is new Positive range 1..1000;
type Queue_Type is ;
procedure Enqueve (Item Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queveunderflow : exception;

type Marker is mod QueueSize;

type List is array (Marker) of Element;

type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;

anything on this slide
end record;

still not perfectly clear?

end Queue_Pack_Private;

“exception handler” in the call-chain. |

“exception handler” in the call-chain. |

A queue with proper exceptions
package body Queue_Pack_Exceptions is
procedure Enqueue (Item : Element; Queue
begin
if Is_Full (Queue) then
Queue_overflow;

in out Queue_Type) is

Colei All Types come with a long

Queue.Elements (Queue.Free) := Item; list of built-in operators.

Queue. Free Marker’Succ (Queue.Free);
Queue. Is_Empty := False;
end Enqueue;

Syntactically expressed
as attributes
procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is
if Is_Empty (Queue) then

Queue_underflow;
end if: more generic: *Succ works for
' nce on enumeration types
Iten = Queue.Elenents (Queve.Top); | "t o
Queue.Top Marker’Succ (Queue.Top);
Queue.Is_Empty := Queue.Top = Queue.Free;
end Dequeue;

end Queue_Pack_Exceptions;

A queue test with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_I0 ; use Ada.Text_T0;
procedure Queue_Test_Exceptions is
Queue : Queue_Type;
Ttem : Element;
begin
Enqueue (Turn, Queue);
Dequeue (Item, Queue);
Dequeue (Ttem, Queue); -- will produce a Queue_underflow exception

Queue_underflow => Put (“Queue underflow”);
Queue_overflow Put (“Queue overflov
end Queue_Test_Exceptions;
¢ " anything on this slide
still not perfectly clear?

A queue with proper information hiding

package Queue_Pack_Private is
QueueSize : constant Integer := 10;
type Element is new Positive range 1..1000;
type Queue_Type is ;
procedure Enqueue (Item Element; Queue: in out Queue_Type);
procedure Dequeue (Ttem: out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;
function Is_Full (Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;

private splits the
type Marker is mod QueueSize; specification into a public
type List is array (Marker) of Element; and a private section
type Queue_Type is record —_—
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List;
end record;

end Queue_Pack_Private;

The private section is only
here so that the specifications
can be separately compiled.

A queue with proper information hiding

package body Queue_Pack_Private is
procedure Enqueue (Item: Element; Queue: in out Queue_Typelfyis
begin
if Is_Full (Queue) then
Queueoverflow;

end if; '
Queue.Elements (Queue.Free) := Item;
Queue.Free U
Queue. Is_Empty

end Enqueue;

procedure Dequeue (N in out Queue_Type) is
begin
if Is_EmpN Queueunderflow; end if;
Iten “lements (Queue.Top);
Queue. Top Tarker (Queue.Top);
Queue. Is_EmptP™= Queue.Top = Queue.Free;
end Dequeue;
function Ts_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
end Queue_Pack_Private

Type attributes often make code

aswell ... “+ 1" does not. |




A queue with proper information hiding

package body Queue_Pack_Private is
procedure Enqueue (Item: Element; Queue: in out Queue_Typ
begin
if Is_Full (Queue) then
Queueover flow;

end if;
Queue.Elements (Queue.Free) := Item;
Queue. Free B ou dey;
Queue. Is_Empty = H
end Enqueue;

procedure Dequeue (Mgn: on¥gt; JPe: in out Queue_Type) is
begin
Queueunderflow; end if;
Elements (Queue.Top);
Queue. Top ker (Queue.Top);
Queue. Is_EnpiIP™ Queue.Top = Queue.Free;
end Dequeue; g
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.lIs_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);

besides the implementation of the |
two functions which has been moved
10 the implementation section.

end Queue_Pack_Private;

A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_I0 ; use Ada.Text_T0;
procedure Queue_Test_Private is
Queue, Queue_Copy : Queue_Type;
Ttem Element;;
begin
Queue_Copy := Queue;
-~ compiler-error: “left hand of assignment must not be limited type”
Enqueue (Ttem => 1, Queue => Queue);

Dequeue (Item, Queue); \
Dequeue (Item, Queue); - would produce a “Queue underflow

exception !
when Queueunderflow => Put (“Queue underflow"); Parameters can be named or
when Queueoverflow => Put (“Queue overflow”); passed by order of definition. ‘
end Queue_Test_Private; (Named parameters do not need
to follow the definition order.)

A contracting queue

package Queue_Pack_Contract is
Queue_Size : constant Positive := 10;
type Element is new Positive range 1 .. 1000;
type Queue_Type is private;

Pre- and Post-predicates are |
checked before and after
procedure Enqueue (Item Element; Q : in out Queue_Type) with !
not Is_Full (Q),
not Is_Empty (Q) and then Length (Q) = Length (Q'0ld) + 1
and then Lookahead (Q, Length (Q)) = Item
and then ( ixin 1 .. Length (Q'0ld) ~
=> Lookahead (Q, ix) = Lookahead (Q'0ld, ix));
procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
not Is_Empty (Q),
not Is_Full (Q) and then Length (Q) = Length (Q’0ld) - 1
and then ( ix in 1 .. Length (Q)
=> Lookahead (Q, ix) = Lookahead (Q'0ld, ix + 1));
fetion To-Fubl” (3 : Queve_Tyne) revurn bl ¥ and 3 quantifersare expressed a5
- . “ “and " expressions resp.
function Length  (Q : Queue_Type) return N.for al1”and “for some” expre P

function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

Original
(re) values
can still be |
referred to.

A contracting queue (cont.)

private
type Marker is mod Queue_Size; !
type List is array (Marker) of Element; . anything on this slide
type Queue_Type is record still not perfectly clear?
Marker := Marker’'First; “—
: Boolean := True;
List; -- will be initialized to invalids

end record
=> (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
and then ( ix in 1 .. Length (Queue_Type)
=> Lookahead (Queue_Type, ix)’Valid);
function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
function Is_Full (Q : Queue_Type) return Boolean is
(not Q.Ts_Empty and then Q.Top = Q.Free);
function Length (Q : Queue_Type) return Natural is
(if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
(Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

A queue with proper information hiding

package body Queue_Pack_Private is
procedure Enqueue (Item: Element; Queue: in out Queue_Typ
begin
if Is_Full (Queue) then
Queueoverflow;
end if;
Queue.Elenents (Queue.Free)
Queue. Free
Queue. Is_Empty
end Enqueue;
procedure Dequeue (Mgn: o
begin

if Ts Enlg (Qu Q o Queueunderflow; end if;
Item Elements (Queue.Top);

Queue. Top S Tker (Queue. Top);
Queue. Is_Enpy*™ Queue.Top = Queue.Free;
end Dequeue;
function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.ls_Empty);
function Is_Full (Queue : Queue_Type) return Boolean is
(not Queue.Is_Empty and then Queue.Top = Queue.Free);
end Queue_Pack_Private;

still not perfectly clear?

A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_I0 ; use Ada.Text_T0;
procedure Queue_Test_Private is

Queue, Queue_Copy : Queue_Type;

Item : Element;
begin

Queue_Copy := Queue;

-~ compiler-error: “left hand of assignment must not be limited type”

Enqueue (Ttem => 1, Queue => Queue);

Dequeue (Ttem, Queue);

Dequeue (Item, Queue); -- would produce a “Queue underflow”
exception

when Queueunderflow => Put (“Queue underflow”);

when Queueoverflow => Put (“Queue overflow”);

GO RS T still not perfectly clear?

A contracting queue

package Queue_Pack_Contract is
Queue_Size : constant Positive := 10;
type Element is new Positive range 1 .. 1000; still not perfectly clear?
type Queue_Type is private; —
procedure Enqueue (Item Element; Q : in out Queue_Type) with
not Is_Full (Q),
not Is_Empty (Q) and then Length (Q) = Length (Q'0ld) + 1
and then Lookahead (Q, Length (Q)) = Item
and then (: ix in1 Length (Q'0ld)
> Lookahead (Q, ix) = Lookahead (Q’0ld, ix));
procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
not Is_Empty (Q),
=> not Is_Full (Q) and then Length (Q) = Length (Q’0ld) - 1
and then (: ix in1 Length (Q)
=> Lookahead (Q, ix) = Lookahead (Q’0ld, ix + 1));
function Is_Empty (Q : Queue_Type) return Boolean;
function Is_Full  (Q : Queue_Type) return Boolean;
function Length  (Q : Queue_Type) return Natural;
function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

A contracting queue

package body Queue_Pack_Contract is

procedure Enqueve (Item : Element; Q : in out Queue_Type)eis

begin
Q.Elements (Q.Free) := Item; L]
Q.Free = Q.Free
Q.Is_Empty = False;
end Enqueue;
)

procedure Dequeue (@tem : out EMEenty Jut Queve_Type) is

begin
Iten = Q pRentL 0.7

Q.Is_Empty ¥ Q Free;

’ No checks in the implementation part,
end Dequeue;

as all required conditions have been
guaranteed via the specifications.

end Queue_Pack_Con#ract;

anything on this slide

anything on this slide

anything on this slide

A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_I0 ; use Ada.Text_IO;
procedure Queue_Test_Private

Queue, Queue_Copy : Queue_Type;

Item Elenent;

begin
Queue_Copy := Queue;
- compiler-error: “left hand of assignment must not be limited type”

Enqueue (Item => 1, Queue => Queue);
Dequeue (Item, Queue);
Dequeue (Ttem, Queue); -~ would produce a “Queue underflow”
exception
when Queueunderflow => Put (“Queue underflow”);
when Queueoverflow => Put (“Queue overflow");
end Queue_Test_Private;

Language refresher / introduction course

Ada
Contracts

. introducing:
* Pre- and Post-Conditions on methods
e Invariants on types
* For all, For any predicates

A contracting queue (cont.)

private
type Marker is mod Queue_Size;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker := Marker’First;
Is_Empty : Boolean := True;
Elements : List; - will be initialized to invalids
end record

function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
function Is_Full (Q : Queue_Type) return Boolean is
(not Q.Is_Empty and then Q.Top = Q.Free);
function Length (Q : Queue_Type) return Natural is
(if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
(Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

A contracting queue test

with Ada.Text_I0; use Ada.Text_T0;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;
procedure Queue_Test_Contract is
Queue : Queue_Type;
Item : Element;
begin
Enqueue (Item => 1, Q => Queue);
Enqueue (Item => 2, Q => Queue);
Dequeue (Ttem, Queue); Put (Element’Image (Item));
Dequeue (Item, Queue); Put (Element’Image (Item));
Dequeue (Ttem, Queue);
Put (Element’Inage (Item));
Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));
exception
when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);
end Queue_Test_Contract;

A queue test with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO ; use Ada.Text_IO;
procedure Queue_Test_Private is
Queue, Queue_Copy : Queue_Type;
Item Element
begin lllegal operation on a limited type. J
Queue_Copy := Queue; e
—- compiler-error: “left hand of assignment must not be limited type”
Enqueue (Item => 1, Queue => Queue);
Dequeue (Item, Queue);
Dequeue (Item, Queue); -- would produce a “Queue underflow”
exception
when Queueunderflow => Put (“Queue underflow”);
when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

A contracting queue

package Queue_Pack_Contract is
Queue_Size : constant Positive := 10;
type Element is new Positive range 1 .. 1000;
type Queue_Type is private;
procedure Enqueve (Item Element; Q : in out Queue_Type) with

procedure Dequeue (Iten : out Element; Q : in out Queue_Type) with

function Is_Empty (Q : Queue_Type) return Boolean;
function Is_Full  (Q : Queue_Type) return Boolean;
function Length  (Q : Queue_Type) return Natural;
function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

A contracting queue (cont.)

private
type Marker is mod Queue_Size;
type List is array (Marker) of Element;
type Queue_Type is record
Top, Free : Marker
Is_Empty : Boolean
Elements : List; -- will be initialized to invalids|
end record
=> (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
and then ( ix in 1 .. Length (Queue_Type)
=> Lookahead (Queue_Type, ix)’Valid);
function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
function Is_Full (Q : Queue_Type) return Boolean is
(not Q.Ts_Empty and then Q.Top = Q.Free);
function Length (Q : Queue_Type) return Natural is
(if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
(Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

Type-Invariants are checked
on return from any operation
defined in the public part.

A contracting queue test

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;
procedure Queue_Test_Contract is
Queue : Queue_Type;
Iten : Element; |
Violated Pre-condition will raise
an assert failure exception. |

begin
Enqueue (Item => 1, Q => Queue);
Enqueue (Item => 2, Q => Queue);
Dequeue (Ttem, Queue); Put (Element’Image (Item));
Dequeue (Ttem, Queue); Put (Element’Image (Item));
Dequeue (Ttem, Queue);
Put (Element’Inage (Item));
Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));

exception
when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);
end Queue_Test_Contract;




A contracted qu._- Exceptions are commonly preferred to
% handle rare, yet valid situations.

Language refresher / introduction course
Contracts are commonly used to test program

= ;;// correctness with respect to its specifications.
procedure Enqueue (Item : Elgrént e e ypE

with Ada.Text_10; use Ada.Text_I0; !

3 Ada
-~ gaflld also be “=> True” according to specifications
with Exceptions; use Exceptions;

package Queue_Pack_Contract is
A contracting queue test

A generic queue
Generic (polymorphic) packages
with Queue_Pack_Contract; use Queue_Pack Contract;
with System.Assertions; use System.Assertions;
procedure Queue_Test_Contract
Queue : Queue_Type; A iati i procedure Enqueue (Iten Elenent; Queue:
Ttem : Flement; Instantiation of generic packages Srocedure Dedueue (Iten
begin
Enqueve (Item => 1, Q => Queue);
3 on this slid
Enqueue (Ttem => 2, Q => Queue); IO, o8 )
Dequeue (Item, Queue); Put (Element’Image (Item)); SUENOEREriEerY :
Dequeue (Ttem, Queue); Put (Element’Image (Item)); — = Top, Free : Marker := Marker’First;
Dequeue (Item, Queue);
Put (Element’ Inage (Item));

type Element is ]
. introducing: package Queue_Pack_Generic is

Queuesize: constant Integer := 10;
s * Specification of generic packages

type Queue_Type is limited private;

procedure Dequeue (Item : out Element; Q : in out Queue_Type)

, - could also be “=> True” according to specifications

in out Queue_Type);
out Element; Queue: in out Queue_Type);
function Is_Empty (Queue : Queue_Type) return Boolean;

function Is_Full (Queue : Queue_Type) return Boolean;
- Queueoverflow, Queueunderflow
type Queue_Type is record hose contracts can be used to fully specify

T private
operations and types. Specifications should be type Marker is mod QueueSize;
complete, consistent and canonical, while usi type List is array (Marker) of Element;
as little implementation details as possible. type Queue_Type is record
Put (“Queue is empty on exit: “); Put (Boolean'Image (Is_Empty (Queue))); - — — — — Marker := Marker'First;
Boolean := True;

exception e

when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);
end Queue_Test_Contract;

exception;

A generic queue
package body Queue_Pack_Generic is

. . . procedure Enqueve (Item
A generic queue A generic queue A generic queue begin

- if Is_Full (Queue) then
The type of Element now becomes a type Element is ; type Element is ; raise Queueoverflow;
parameter of a generic package. package Queue_Pack_Generic is package Queue_Pack_Generic is end if;
———— QueueSize: constant Integer := 10; Tl QueueSize: constant Integer := 10;
type Queue_Type is limited private; type Queue_Type is limited private; Generic aspects can include
procedure Enqueue (Item:  Element; Queue: in out Queue_Type);
procedure Dequeue (Item: out Element; Queue: in out Queue_Type); procedure Dequeue (Item: out Element; Queue
function Is_Empty (Queue : Queue_Type) return Boolean;

Queue. Elements (Queue.Free) i= Ttem; €
; Queue. Free = ey Fregh’
il procedure Dequeue (Item: out Element; Queue
function Is_Empty (Queue : Queue_Type) return §° Incomplete types
function Is_Full (Queue : Queue_Type) return Boolean;

type Element is ;
package Queue_Pack_Generic is
QueueSize: constant Integer := 10;

Element; Queue: in out Queue_Type)

type Queue_Type is limited privat
procedure Enqueue (Item: Element; Queue: if,

in out Queve_Type): end Enqueue;
function Is_Empty (Queue : Queue_Type) return Boolean; procedure Dequeue (Iuff: out Flerife: 0N out Queue_Type) is
function Is_Full (Queve : Queue_Type) return ks Constants function Is_Full (Queve : Queue_Type) return Boolean; begin
8
Queueoverflow, Queueunderflow : exception; Queueoverflow, Queveunderflow : exceptio et Tunctions Queueoverflow, Queveunderflow : exception; i oe,
private private private
yoe is mod Queuesiz | e is mod ize; Other packages pe is mod QueueSize; enents (Queue. Top);
e No restrictions (private) have 0T AL S e st e Queue.Top (Queue.Top);
type List is array (Marker) of Element; |y oot for the type of Elenent. type List is array (Marker) of Element; Objects (interfaces) type List is array (Marker) of Element; Koy o, oy TN e
Queue_Type is record N - type Queue_Type is record type Queue_Type is record ueue. Is_Enpty Ygg,Queve. Top = Queue. Free;
Top, Free : Marker := Marker’First; T Haskell syntax Top, Free : Marker := Marker’First; Default values can be provided Top, Free : Marker := Marker’First; end Dequeue;
Is_Empty : Boolean := True; Is_Empty : Boolean := True; (making those parameters DP"O“A"J Is_Empty : Boolean := True; function Ts_Empty (Queve : Queue_Type) return Boolean is (Queue.ls_Empty);
Elements : List; enqueve :: a -> Queue a > Queue a | Elements : Lis S function Is_Full (Queue : Queue_Type) return Boolean is
end record; (not Queue.Ts_Empty and then Queue.Top = Queue.Free);
end Queue_Pack_Generic;

if Is_Em
Item

feueunderflow; end if;

— Elements : List;
end record; end record;
end Queue_Pack_Generic; end Queue_Pack_Generic; end Queue_Pack_Generic;

anything on this slide
still not perfectly clear?

A generic queue test program A generic queue test program

A generic queue test program
; -- cannot apply ‘use’ clause here

; -- cannot apply ‘use’ clause here ; -- cannot apply ‘use’ clause here type Element is private;
with Ada.Text_T0 ; use Ada.Text_I0; with Ada.Text_I0 ; use Ada.Text_IO; with Ada.Text_T0 ; use Ada.Text_I0; package Queue_Pack_Generic is
procedure Queue_Test_Generic is procedure Queue_Test_Generic is procedure Queue_Test_Generic is QueueSize: constant Integer := 10;
package Queue_Pack_Positive is package Queue_Pack_Positive is package Queue_Pack_Positive is type Queue_Type is limited private;
Queue_Pack_Generic ( » Queue_Pack_Generic ( 0 — Queue_Pack_Generic ( o3 procedure Enqueue (Item Element; Queue: in out Queue_Type);
Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
Queue : Queue_Type; Quede : Queve_Type; Queve : Queve_Type; function Is_Empty (Queue : Queue_Type) return Boolean;
Item : Positive; Iten : Positive; Iten : Positive; function Is_Full =(Queue : Queue_Type) return Boolean;
Queueoverflow, Queueunderflow : exception;
begin begin begin ivaTe
Enqueue (Ttem => 1, Queue => Queue); Enqueue (Ttem => 1, Queue => Queue); Enqueue (Ttem => 1, Queue => Queue);
Dequeue (Item, Queue); Dequeue (Ttem, Queue); Dequeue (Ttem, Queue);
Dequeue (Ttem, Queue); -- will produce a “Queue underflow” Dequeue (Ttem, Queue); -- will produce a “Queue underflow” Dequeue (Item, Queue); -- will produce a “Queue underflow” type Queue_Type is record
exception exception exception Top, Free : Marker
when Queueunderflow => Put (“Queve underflow”); when Queueunderflow => Put (“Queve underflow”); when Queueunderflow => Put (“Queue underflow”)
when Queueoverflow => Put (“Queue overflow”); vhen Queueoverflow => Put (“Queue overflow”); when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Generic; end Queue_Test_Generic; end Queue_Test_Generic;

A generic queue

Instantiate generic package

type Marker is mod QueueSize;
type List is array (Marker) of Element;

Marker'First;
| Is_Empty : Boolean := True; None of the packages so far can be
anything on this slide

Elements : List; used in a concurrent environment.
still not perfectly clear? e

end Queue_Pack_Generic;

e

" " A generic protected queue A generic protected queue A generic protected queue
Language refresher / introduction course generic generic

type Element is private;
Ada

type Element is private; type Element is private;
type Index is mod <>; -~ Modulo defines size of the queue type Index is mod <>; ~-- Modulo defines size of the queue. type Index is mod <>; - Modulo defines size of the queue
A N f package Queue_Pack_Protected_Generic is ackage Queue_Pack_Protected_Generic is package Queue_Pack_Protected_Generic is
ccess routines for concurrent 5)’5‘6’"5 type Queue_Type is limited private; type Queue_Type is limited private; type Queue_Type is limited private;
introducing: type Protected_Queue is type Protected_Queue is type Protected_Queue is
Enqueue (Item Element); Enqueue (Item Element); Enqueue (Item Element); A6 fe
« Protected objects Dequeue (Item : out Element): Dequeue (Item : out Element): e (e o o Berao) Queue is protected for saf
Empty_Queue; Empty_Queue; et concurrent access.
 Entry guards Is_Empty return Boolean; Is_Empty return Boolean; i % Is_Empty return Boolean;
= Is_Full return Boolean; Is_Full return Boolean; Generic components of the package:
* Side-effecting (mutually exclusive) entry and procedure calls
* Side-effect-free (concurrent) function calls Queue : Queue_Type; Queue : Queue_Type;
end Protected_Queue;

entry, procedure, function
while the Index need to Queue : Queue_Type;
end Protected_Queue; be a modulo type.
private

end Protected_Queue; .
private private
type List is array (Index) of Element; type List is array (Index) of Element; type List is array (Index) of Element;
type Queue_Type is record type Queue_Type is record type Queue_Type is record
Top, Free : Index’First; Top, Free : Ii = Index’First; Top, Free
Is_Empty Is_Empty : Is_Empty
Elements : Elements H Elements
end record; end record; end record;
end Queue_Pack_Protected_Generic; end Queue_Pack_Protected_Generic; end Queue_Pack_Protected_Generic;

Three categories of a access routines |
Is_Full return Boolean; are distinguished by the keywords:
Element can be anything

IndexFirst;




A generic protected queue

generic
type Element is private;
type Index is mod <>;
package Queue_Pack_Protected_Generic is

-- Modulo defines size of the queue.

type Queve_Type is limited private;
type Protected_Queue is
Enqueue (Item Element);
Dequeue (Item : out Element);
Ennty_Queue; Procedures are mutually exclusive
Ls_Empty return Boolean; to all other access routines.
Is_Full return Boolean;
= e
Rationale:
Procedures can modify
the protected data.

Queue : Queue_Type;
end Protected_Queue;
private
type List is array (Index) of Element; Hence they need a guarantee
type Queue_Type is record for exclusive access.
Top, Free : Index := Index’First; ——
Is_Empty : Boolean := True;
Elements : List;
end record;
end Queue_Pack_Protected_Generic;

A generic protected queue

package body Queue_Pack_Protected_Generic is
body Protected_Queue is
Enqueue (Item : Element) not Is_Full is
begin
Queue.Elements (Queue.Free)
Queue.Is_Enpty := False;
end Enqueue;
Dequeue (Item : out Element)

= Item; Queue.Free := Index’Succ (Queue.Free);

not Is_Empty is
begin
Item := Queue.Elements (Queue.Top); Queue.Top
Queue. Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
Empty_Queue is

= Index’Succ (Queue.Top);

begin
Queue.Top := Index'First; Queue.Free
end Empty_Queue;
Is_Empty return Boolean is (Queue.ls_Empty);
Is_Full return Boolean is
(not Queue.Ts_Empty and then Queue.Top = Queue.Free);

= Index'First; Queue.Is_Empty := True;

end Protected_Queue;
end Queue_Pack_Protected_Generic;

A generic protected queue test

use Ada.Task_Identification;

with Ada.Task_Identification;
use Ada.Text_T0;

with Ada.Text_10;

with Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is

type Queue_Size is mod 3;
package Queue_Pack_Protected_Character is

new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);

use Queue_Pack_Protected_Character;

If more than one instance of a specific

task is to be run then a task type (as
Er— opposed to a concrete task) is declared.
Consuer; —

Producers : array (Task_Index) of Producer;
Consumers : array (Task_Index) of Consumer;

)
begin

Queue : Protected_Queue;

type Task_Index is range 1 .. 3;

Queue_Test_Protected_Generic;

A generic protected queue test

subtype Some_Characters is Character range *
Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Inage (Current_Task) & “ finds the queue to be &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Inage (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -~ task might be blocked here!

end loop
Put_Line (“<-
Producer;

Task “ & Image (Current_Task) & “ terminates.”);

A generic protected queue

generic
type Element is private;
type Index is mod <>; -- Modulo defines size of the queue.
package Queue_Pack_Protected_Generic is
type Queue_Type is limited private;
type Protected_Queue is
Enqueue (Item Elenent);
Dequeue (Item : out Element);
Empty_Queue;
Is_Empty return Boolean;
Is_Full return Boolean;

Functions are mutually exclusive
to procedures and entries, yet
concurrent to other functions.

Queue : Queue_Type; -
end Protected_Queue;
Rationale:
private
S ORe
type List is array (Index) of Element; The compiler L"’D“"\hOf it
type Queue_Type is record functions to be side-effect-free witl
e = Index’First respect to the protected data.
Hence concurrent access can be
granted among functions without risk.

A generic protected queue

package body Queue_Pack_Protected_Generic is
body Protected_Queue is
Enqueue (Ttem : Element) not Is_Full is
begin
Queue.Elements (Queue.Freg) := Ttem; Queue.Free :
Queue. Is_Empty := False;
end Enqueue;
Dequeue (Ttem : ou/Element) not Is_Empty is

begin
Ttem := Queve.Eleney Wropx Queue.Top := Index’Succ (Queue.To
" ~eve. Free

Ouesia T Fmns

Index’Succ (Queue.Free);

[
follow after when in the
implementation of entries

ut __Free := Index'Eirct+ OuausT=fmpty :=
By _QUee [ Togks are automatically blocked or released
Is_Empty depending on the state of the guard,
Is_Full | Gard expressions are re-evaluated on exiting an
(not Queue. Is_El entry or procedure
end Protected Queue;|  (no point to re-check them at any other time).
end Queue_Pack_Protecte( b,y one waiting task on one entry is released

A generic protected queue test

use Ada.Task_Identification;

with Ada.Task_Identification;
use Ada.Text_I10;

with Ada. Text_10;
with Queue_Pack_Protected_Generic;
procedure Queue_Test_Protected_Generic is

type Queve_Size is mod 3;

ackage Queue_Pack_Protected_Character is

new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);

use Queue_Pack_Protected_Character;

Queue : Protected_Queue;

type Task_Index is range 1

Multiple instances of a task can
be instantiated e.g. by declaring
Producers : array (Task_Index) of Producer; | anarray of this task type
Consumers : array (Task_Index) of Consumer;

Producer;
Consumer;

© Tasks are started right when
begin I

Queue_Test_Protected_Generic;

A generic protected queue test

subtype Some_Characters is Character range s

Producer is The executable code for a task is provided in its body.

begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Inage (Current_Task) & “ finds the queue to be &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Inage (Ch) &
“ to the queve.”);
Queue.Enqueve (Ch); -~ task might be blocked here!

end loop;
Put_Line (“<---- Task
Producer;

& Image (Current_Task) & “ terminates.”);

such an array is ¢ rmledJ

A generic protected queue

generic
type Element is private;
type Index is mod ©; -- Modulo defines size of the queue.
package Queue_Pack_Protected_Generic is
type Queue_Type is limited privat
type Protected_Queue is ‘
e e & e Eloment)i | entries are mutually exclusive (0 all other
caueue (Lten © oUE ELEent); | ™3 ccess routines and also provide one
e e guard per entry which need to evaluate
. e N of entry is granted.
Is_Full return Boolean; (UASEEERCIANE
The guard expressions are defined
Queue : Queue_Type; in the implementation part,
end Protected_Queue;
Rationale:

Entries can be blocking even if the
protected object itself is unlocked.
Hence a separate task waiting
queue s provided per entry.

private
type List is array (Index) of Element;

type Queue_Type is record
Index := Index’First;
: Boolean := True;

end Queue_Pack_Protected_Generic;

A generic protected queue

package body Queue_Pack_Protected_Generic
body Protected_Queue is
Enqueue (Item : Element) not Is_Full is
begin
Queue.Elements (Queue.Free) :
Queue.Is_Enpty := False;
end Enqueue;
Dequeue (Item : out Element)

Item; Queue.Free := Index’Succ (Queue.Free);

not Is_Empty is
begin
Item := Queue.Elements (Queue.Top); Queue.Top
Queue. Is_Empty := Queue.Top = Queue.Free;
end Dequeue;
Empty_Queue is

= Index’Succ (Queue.Top);

begin
Queue. Top
end Empty_Queue;
Is_Empty return Boolean is (Queue.ls_Empty);
Is_Full return Boolean is
(not Queue.Ts_Empty and then Queue.Top = Queue.Free);

= Index’First; Queue.Free := Index’First; Queue.Is_Empty := True;

end Protected_Queue; still not perfectly clear?
end Queue_Pack_Protected_Generic;

A generic protected queue test

use Ada.Task_Identification;
use Ada.Text_T0;

with Ada.Task_Identification;
with Ada.Text_10;
th Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is
type Queue_Size is mod 3;

package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);

use Queue_Pack_Protected_Character;
Queue : Protected_Queue;
type Task_Index is range 1

[
]
Consurer; These declarations spawned

array (Task_Index) of Producer; <" offall the production code

Producers :
Consumers : array (Task_Index) of Consumer;

()
begin Often there are no statements for the “main task
; (here explicitly stated by a nul1 statement)
Queue_Test_Protected_Generic; — —
- 3 though
This task is prevented from terminating thougl
until all tasks inside its scope terminated

A generic protected queue test

subtype Some_Characters is Character range ‘a
Producer is

begin
for Ch in Some_Characters loop
Put_Line (“Task * & Inage (Current_Task) & “ finds the queue to be
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
d

“a

an
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’ Inage (Ch) &
“ to the queve.”);
Queue.Enqueve (Ch); -~ task might be blocked here!
end loop;
Put_Line (“<--—- Task “ & Image~(Current Task) & “ terminates.”);
Producer;
There are three of those tasks
and they are all ‘hammering
the queue at full CPU speed

anything on this slide

A generic protected queue

generic
type Element is private;
type Index is mod <>;
package Queue_Pack_Protected_Generic is

-- Modulo defines size of the queue.

type Queue_Type is limited private;
type Protected_Queue is
Enqueue (Item Element);
Dequeue (Item : out Element);
Empty_Queue;
Is_Empty return Boolean;
Is_Full return Boolean;

Queue : Queue_Type;
end Protected_Queu
private
type List is array (Index) of Element;
type Queue_Type is record
Index := Index’First;

Boolean := True;
. anything on this slide

sill not perfectly clear?

end Queue_Pack_Protected_Generic; -

A generic protected queue test

use Ada.Task_Identification;

with Ada.Task_Identification;
use Ada.Text_I0;

with Ada.Text_I0;
with Queue_Pack_Protected_Generic;
procedure Queue_Test_Protected_Generic is
type Queue_Size is mod 3;
package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character,
use Queue_Pack_Protected_Character;

Index = Queue_Size);

Queue : Protected_Queue;
type Task_Index is range 1

Producer;

Consuner;
Producers : array (Task_Index) of Producer;
Consuers : array (Task_Index) of Consumer;

Queue_Test_Protected_Generic;

A generic protected queue test

use Ada.Task_Identification;

with Ada.Task_Identification;
use Ada.Text_10;

with Ada.Text_10;
with Queue_Pack_Protected_Generic;
procedure Queue_Test_Protected_Generic is
type Queue_Size is mod 3;
package Queue_Pack_Protected_Character is
new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);

use Queue_Pack_Protected_Character;
Queue : Protected_Queue;
type Task_Index is range 1
Producer;
Consuner;
Producers : array (Task_Index) of Producer;
Consumers : array (Task_Index) of Consumer;
)
begin
anything on this slide
still not perfectly clear?

Queue_Test_Protected_Generic;

A generic protected queue test

subtype Some_Characters is Character range
Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Inage (Current_Task) & * finds the queue to be
(if Queue.Is_Empty then “EMPTY” else “not empty”) &

“g

&

“ and
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Inage (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -~ task might be blocked here!
end loop;
Put_Line (<
Producer;

- Task “ & Image (Current_Task) & “ terminates

Tasks automatically terminate once they reach their end declaration
(and once all inner tasks are terminated).




A generic protected queue test

subtype Some_Characters is Character range ‘a
Producer is
begin
for Ch in Some_Characters loop
Put_Line (“Task “ & Inage (Current_Task) & “ finds the queue to be *
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“and “ &
(if Queue.Is_Full then “FULL” else “not full”) &
“ and prepares to add: “ & Character’Inage (Ch) &
“ to the queue.”);
Queue.Enqueue (Ch); -- task might be blocked here!
end loop;
Put_Line (“<-
Producer;

Task “ & Image (Current_Task) & “ terminates.”);

anything on this slide
sill not perfectly clear?

A generic protected queue test

Task producers(1) finds the queue to be EMPTY and not full and prepares to add: “a’ to the
Task producers(1) finds the queue to be not empty and not full and prepares to add: ‘b
Task producers(1) finds the queue to be not empty and not full and prepares to add.

&

Task producers(1) finds the queue to be not empty and FULL and prepares to add: “d’ to the queue

Task producers(2) finds the queue to be not empty and FULL and prepares to add.

Task not empty and FULL and prepares to add.

Task d s to be not empty and

Task to be not empty and

Task e to be not empty and

Task consuners(1) receivel ars to be not empty and

Task consurers(1) received: ‘a’ and the queue appears to be not empty and not full afterwards

Task producers(1) terminates
Task consuners(3) received: ‘b’ and the queue appears o be EMPTY and not full aftervards
<= Task consuners(2) terminates and received 1 ite
Task producers(2) terninates
producers(3) terminates

consumers(1) terminates and received 12 ite:
consuners(3) terminates and received 5 items.

An abstract queue

type Element is private;
package Queue_Pack_Abstract is

type Queve_Tnterface is 3

procedure Enqueve (Q : in out Queue_Interface; Item Element) is

procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;

An abstract queue

generic
type Element is private;
package Queue_Pack_Abstract is
type Queue_Interface is ;
procedure Enqueue (Q : in out Queue_Interface; Item Elenent) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;

this does not require an implementation package (as all procedures are abstract)

anything on this slide
still not perfectly clear?

What is going on here?

A generic protected queue test

Consurer is
Ttem Character;
Counter : Natural
begin
loop
Queue.Dequee (Item); -- task might be blocked here!
Counter := Natural’Succ (Counter);
Put_Line (“Task “ & Image (Current_Task) &
“ received: “ & Character’Inage (Item) &
“ and the queue appears to be &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“ and
(if Queue.Is_Full then “FULL” else “not full”) &
“ afterwards.”);
exit when Ttem = Some_Characters’Last;

- Task “ & Image (Current Task) &
“ terminates and received® & Natural'Image (Counter) & “ items.
Consumer;

A generic protected queue test

Task producers(1) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue
Task producers(2) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue
Task producers(1) finds the queue to be not empty and not full and prepares to add: ‘b’ to the que
Task consumers(1) received: ‘a’ and the queue appears to be EMPTY and not full afterwards
Task producers(3) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the
' to the
‘b to the
a’ and the queue appears to be EMPTY and not full afterwards
consumers(3) received: ‘b’ and the queue appears to be EMPTY and not full aftervards

<--- Task producers(1) terminates.
resleoiucars 23 niafoslumsa]sclbajnoc ety st ool preparesieclecd: s/l el o
Task and ards
Task con ERdag
sklrodiEaes.)]einea] e {aieualtoliefncelanetyand el s pcanaceales
consumers(1) received:
Task producers(2) terminates
Task consumers(2) terminates and received 5 items
consumers(3) received: ‘e’ and the queve appears to be not empty and not full afterwards.
ask producers(3) terminates

£ to the qu
'd the queue appears to be not empty and not o sfiaruards

Task eived: *f* and the queue appears to be not empty and not full afterwards.
Task con £ and the queue appears to be EMPTY and not full afterwards
< ved 6 itens.
Does this make any sense?

An abstract queue

Motivation:
Different, derived implementations
(potentially on different computers)
fenere can be passed around and referred to with the
type Element is private;

package Queue_Pack_Abstract is _

type Queve_Interface is

procedure Enqueue (Q : in out Queue_Interface; Item Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;

A concrete queue

with Queue_Pack_Abstract;
Queue_Instance is new Queue_Pack_Abstract (<>);
type Index is mod <>; -- Modulo defines size of the queue.
package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;
protected type Protected_Queue is new Queue_Interface
entry Enqueue (Ttem : Element);
entry Dequeue (Item : out Element);
not overriding procedure Empty_Queue;
not overriding function Is_Empty return Boolean;
not overriding function Is_Full return Boolean;
private
Queue : Queue_Type;
end Protected_Queue;
private
) -- as all previous private queue declarations
end Queue_Pack_Concrete;

same common interface as defined here. |

A generic protected queue test

Consuner is Another three tasks and are all

hammering' the queue at this
; end and at full CPU speed.

Item Character;
Counter : Natural := @

begin
loop
Queue.Dequeue (Item); -- task might be blocked here!
Counter := Natural’Succ (Counter);
Put_Line (“Task “ & Image (Current_Task) &
“ received: “ & Character’Inage (Item) &
“ and the queue appears to be &
(if Queue.Is_Empty then “EMPTY” else “not empty”) &
“ and
if Queue.Is_Full then “FULL” else “not full”) &
“ afterwards.”);
exit when Ttem = Some_Characters’Last;

Task “ & Image (Current_Task) &

“ terminates and received® & Natural'Image (Counter) & “ items.”
Consumer;

Language refresher / introduction course

Ada
Abstract types & dispatching

. introducing:

Abstract tagged types & subroutines (Interfaces)
Concrete implementation of abstract types

Dynamic dispatching to different packages,
tasks, protected types or partitions.
Synchronous message passing.

An abstract queue
synchronized means that this interface can
only be implemented by synchronized entities |
like protected objects (as seen above)
or synchronous message passing

Abstract, empty type
definition which serves to

type Element is private;
package Queue_Pack_Abstract is

type Queue_Interface is

procedure Enqueue (Q : in out Queue_Interface; Item Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;

A concrete queue

with Queue_Pack_Abstract; A generic package
generic which takes another
Queue_Instance is Queue_Pack_Abstract (<>);|  generic package
type Index is mod <>; -- Modulo defines size of the queue. as a parameter.

package Queue_Pack_Concrete is
use Queve_Instance;
e Queue_Type is limited privat
protected type Protected_Queue is new Queue_Interface
entry Enqueue (Item :  Element);
entry Dequeue (Item : out Element);
procedure Empty_Queue;
function Is_Empty return Boolean;
function Is_Full return Boolean;

Queue_Type;

end Protected_Queue;
private

(...) == as all previous private queue declarations
end Queue_Pack_Concrete;

define interface templates. |

A generic protected queue test

Consuner is
Tten  : Character;
Counter : Natural := 0;
begin
loop
Queue.Dequeue (Item); -- task might be blocked here!
Counter := Natural’Succ (Counter);
Put_Line (“Task “ & Image (Current_Task) &
« received: “ & Character” Inage (Item) &
“ and the queue appears to be
(if Queue.Is_Empty then “EMPTY” el~e “not empty”) &
“g

(if Queue.Is_Full then “FULL” else “not full”) &
“ afterwards.”);
exit when Ttem = Some_Characters’Last;
end loop;

Put_Line (“<---- Task “ & Image (Current_Task) &

“ terminates and received” & Natural’'Image (Counter) & “ items.”);

Consuner;

. anything on this slide
still not perfectly clear?

Language refresher / introduction course

Ada
Abstract types & dispatching

introducing:
Abstract tagged types & subroutines (Interfaces)
Concrete implementation of abstract types

Dynamic dispatching to different packages,
tasks, protected types or partitions.

Synchronous message pas:

" Advanced topic —

An abstract queue

type Element is private;
package Queue_Pack_Abstract is
type Queue_Tnterface is B
procedure Enqueue (Q : in out Queue_Interface; Item Element) is
procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is
end Queue_Pack_Abstract;
Abstract methods need to be
overridden with concrete methods
when a new type is derived from it.

A concrete queue

with Queue_Pack_Abstract;
Queue_Instance is new Queue_Pack_Abstract (<>);
type Index is mod <>; -- Modulo defines size of the queue.
package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;

A synchronous
implementation of
the abstract type
Queue_Interface

protected type Protected_Queue is new Queue_Interface
entry Enqueue (Item :  Element);
entry Dequeue (Item : out Element);
procedure Empty_Queue;
function Is_Empty return Boolean; are overridden
function Is_Full return Boolean; with concrete
private implementations
Queue : Queue_Type; —
end Protected_Queue;
private

All abstract methods

(...) -- as all previous private queue declarations
end Queue_Pack_Concrete;




A concrete queue

with Queue_Pack_Abstract;
generic
Queue_Instance is new Queue_Pack_Abstract (<>);
type Index is mod <>; -- Modulo defines size of the queue
package Queue_Pack_Concrete is
use Queue_Instance;
type Queue_Type is limited private;
protected type Protected_Queue is new Queue_Interface
entry Enqueue (Item Element) ;
entry Dequeue (Item : out Element);
not overriding procedure Empty_Queue; Other (not-overriding)
not overriding function Is_Empty return Boolean; |  methods can be added
not overriding function Is_Full return Boolean; L
private
ueue : Queue_Type;
end Protected_Queue;
) =- as all previous private queue declarations
end Queue_Pack_Concrete;

A dispatching test

with Ada.Text_10; use Ada.Text_I0;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character);
use Queue_Pack_Abstract_Character; Sequence of instantiations
type Queue_Size is mod 3;

package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
use Queue_Pack_Character;
type Queue_Class is access all Queue_Interface’class;
ask Queue_Holder; -~ could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;
(SRS
begin
null;
end Queue Test. Dlsuatchmg,

A dispatching test (cont.)

task body Queue_Holder is
Local Queue : constant Queue_Class := new Protected_Queue;
Ttem Character;
begin
Queue_User . Send_Queue (Local_Queue);
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local Queue : constant Queue_Class := new Protected_Queue;
Item Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local Queue.all.Enqueve (‘1');
end Send_Queue;
Local_Queue.a11.Dequeue (Item);

Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
end Queue_User;

A dispatching test (€ont) [ 1 ks could run on

task body Queue_Holder is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item Character;

begin These two calls can be very
Queue_User . Send_Queue (Local_Queue); different in nature:

The first call is potentially
tunneled through a network to
another computer and thus
uses a remote data structure.

Local _Queue.all.Dequeue (Item);

Put_Line (“Local dequeue (Holder): “ & Charact
end Queue_Holder;
task body Queue_User is The second call is always a local call
Local Queue : constant Queue_Class := new Prot  and using a local data-structure.
Item Character; g —
accept Send_Queue (Remote_Queue : Queue_Class) d

Remote_Queue.all.Enqueue (‘r’); z=potentially a remote procedure calll
Local_Queue.all.Enqueve (‘1°);
end Send_Queue;
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (User) : “ & Character’Inage (Item));
end Queue_User;

separate computers

A concrete queue

with Queue_Pack_Abstract;
generic
Queue_Instance is new Queue_Pack_Abstract (<>);
type Index is mod <>; -- Modulo defines size of the queue
package Queue_Pack_Concrete is
use Queue_Tnstance;
type Queue_Type is limited private;
protected type Protected_Queue is new Queue_Interface
entry Enqueue (Item : Element);
entry Dequeue (Item : out Element);
procedure Empty_Queue;
function Is_Empty return Boolean;
function Is_Full return Boolean;
private
ueue : Queue_Type;
end Protected_Queue;
private anything on this slide
) -- as all previous private queue declarations
end Queue_Pack_Concrete; -

A dispatching test

with Ada.Text_I0; use Ada.Text_I0;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
age Queu , i ]
packag QQ v e;PaEk;;b:(ra:(gg:aracter) s Type which can refer to any
new Queue_Pack_Abstract (Character’

e i nce of Queue_Interface
use Queue_Pack_Abstract_Character; instance of Queve_Interface |
type Queue_Size is nod 3;
package Queue_Pack_Character is

new Queue_Pack_Concrete (Queue
use Queue_Pack_Charact

Stract_Character, Queue_Size);

type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; -- could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;
)
begin
null;

end Queue_Test_Dispatching;

A dispatching test (cont.)

task body Queue_Holder is
Local_Queue : constant Queue_Class := new Protected_Queue;
Item : Character;

begin
Queue_User. Send_Queue (Local_Queue);
Local _Queue.all.Dequeue (Item);

Declaring local queues in each task. |

Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local Queue : constant Queue_Class := new Protected_Queue;
Item : Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueve (‘1°);
end Send_Queue;
Local_Queue.a11.Dequeve (tem);
Put_Line (“Local dequeue (User) : “ & Character’Image (Item);
end Queue_User;

A dispatching test (cont.)

task body Queue_Holder is
Local Queue : constant Queue_Class := new Protected_Queue;
Ttem Character;
begin
Queue_User . Send_Queue (Local_Queue); [——
Local_Queue.all.Dequeue (Ttem); — —
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
d Queue_Holder;
task body Queue_User is
Local Queue : constant Queue_Class := new Protected_Queue;
Item Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enquee (‘1');
end Send_Queue; Reading out ‘17
Local_Queue.all.Dequeue (Item); — —
Put_Line (“Local dequeue (User) : “ & Character’Image (Item);
end Queue_User;

still not perfectly clear?

A concrete queue

package body Queue_Pack_Concrete is
body Protected_Queue is

Enqueue (Item : Element) not Is_Full is
[
Queue.Elements (Queue.Free) := Item; Queue.Free :mgndeMsucc (Queue.Free);

Queue.Is_Enpty := False
end Enqueue;
Deaueue (Iten : out Elenent) &
= Queue.Elements (Quep &4 = Index'Succ (Queue.Top);

Queue. Ts_Empjg := Queue.

end Dequeue; 6
begin

Queue rst; Queue.Free := Index’First; Queue.Is_Empty := True;

end Empty_
ty return Boolean is (Queue.Is_Empty);
Full return Boolean is
(not Queue.Ts_Empty and then Queue.Top = Queue.Free);
end Protected_Queue;
end Queue_Pack_Concrete;

A dispatching test

with Ada.Text_10; use Ada.Text_10;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
package Queue_Pack_Abstract_Character is
ew Queue_Pack_Abstract (Character);
use Queue_Pack_Abstract_Character;
type Queue_Size is mod 3;
package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
use Queue_Pack_Character;
type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; - could be on an individual partition / separate computer
task Queue_User is -~ could be on an individual partition / separate computer
entry Send_Queue (Remo(s Queue : Queue_CL ass)
end Queue_User; —
. Declaring two concrete rasks.
begin (Queue_User has a synchronous message passing emrwJ
null; —
end Queue_Test_Dispatching;

A dispatching test (cont.)

task body Queue_Holder is
Local Queue : constant Queue_Class := new Protected_Queue;
Iten : Character;
begin Handing over the Holder’s queue
Queue_User.Send_Queue (Local_Queue); via synchronous message passing. J
Local_Queue.all.Dequeve (Item); —
Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local Queue : constant Queue_Class := new Protected_Queue;
Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueve (‘1);
end Send_Queue;
Local_Queue. al1.Dequeve (Ttem);
Put_Line (“Local dequeue (User) : “ & Character'Inage (Item));
end Queue_User;

A dispatching test (cont.)

task body Queue_Holder is
Local Queue : constant Queue_Class := new Protected_Queue;
Iten : Character;

begin .. anything on this slide
e 2 fectly clear?
Queue_User . Send_Queue (Local_Queue); still not perfectly clear

Local_Queue.all.Dequeue (Ttem);
t_Line (“Local dequeue (Holder): “ & Character’Image (Item));
end Queue_Holder;
task body Queue_User is
Local Queue : constant Queue_Class := new Protected_Queue;
Iten Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
Local_Queue.all.Enqueve (‘1');
end Send_Queue;
Local_Queue.all.Dequeue (Item);
Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
end Queue_User;

A dispatching test

with Ada.Text_I0; use Ada.Text_I0;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character);
use Queue_Pack_Abstract_Character;
type Queue_Size is mod 3;
package Queue_Pack_Character is
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
use Queue_Pack_Character;
type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; -~ could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;

end Queue_Test_Dispatching;

A dispatching test

with Ada.Text_10; use Ada.Text_I0;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;
procedure Queue_Test_Dispatching is
package Queue_Pack_Abstract_Character is
new Queue_Pack_Abstract (Character);
use Queue_Pack_Abstract_Character;
type Queue_Size is mod 3;
package Queue_Pack_Character
new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
use Queue_Pack_Character;
type Queue_Class is access all Queue_Interface’class;
task Queue_Holder; -- could be on an individual partition / separate computer
task Queue_User is -- could be on an individual partition / separate computer
entry Send_Queue (Remote_Queue : Queue_Class);
end Queue_User;
)
gin anything on this slide
null; still not perfectly clear?
d Queue_Test_Dispatching;

A dispatching test (cont.)

task body Queue_Holder is
Local Queue : constant Queue_Class := new Protected_Queue;
Iten : Character;
begin
Queue_User . Send_Queue (Local_Queue);
Local_Queue.all.Dequeve (Item);
Put_Line (“Local dequeue (Holder): “ & CharacterImage (Item));
end Queue_tolder;
task body Queue_User is
Local Queue : constant Queue_Class := new Protected_Queue;
Item Character;
begin
accept Send_Queue (Remote_Queue : Queue_Class) do
Remote_Queue.al1.Enqueue (‘r’); -~ potentially a remote procedure call!
Local_Queue.all.Enqueve (‘1);
end Send_Queue; Adding to both queues
Local_Queue.all.Dequeue (Item); — ——
Put_Line (“Local dequeue (User) : “ & Character'Inage (Item));
end Queue_User;

Language refresher / introduction course

Ada
Ada language status

« Established language standard with free and professionally
supported compilers available for all major OSs and platforms.
Emphasis on maintainability, high-integrity and efficiency
Stand-alone runtime environments for embedded systems.

High integrity, real-time profiles part of the
standard v e.g. Ravenscar profile.

Used in many large scale and/or high integrity projects
« Commonly used in aviation industry, high speed trains,
metro-systems, space programs and military programs.
. also increasingly on small platforms / micro-controllers.
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Chapel

Currently under development at Cray.

(originally for the DARPA High Productivity Computing Systems initiative.)
= Targeted at massively parallel computers
Language primitives for ...

Data parallelism:

v Distributed data storage with fine grained control (“domains”).
w Concurrent map operations (forall)

s Concurrent fold operations (scan, reduce)

Task parallelism:

s concurrent loops and blocks (cobegin, coforall).
Synchronization:

w Task synchronization, synchronized variables, atomic sections.

A data-parallel stencil
config const n = 100,
max_iterations = 50,
epsilon = 1.06-5,
initial_border = 1.0;
const Matrix_w_Borders = {0 .. n+1,8..n+1,0 . n+1},
Matrix = Matrix_w_Borders [1 .. n, 1 ..n, 1 .. 0],
Single_Border = Matrix.exterior (1, 0, 0);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;
proc Stencil (M

Declaring matrices of different, |
yet related dimensions.

[/# Matrix_w_Borders */1 real, (i, j, k) : index (Matrix)) : real {

return (M [i -1, j, k]
MO, 5, KD
+ M, G -1, KD
+M i, §+1,K
+ML, j, k+1]
$M L, 5, k- 1) /6

A data-parallel stencil (cont.)

Field [Single Border] = initial_border; Scalar to 2-d array-slice assignment

(Technically a 3-d domain with
two degenerate dimensions)

for 1 in 1 .. max_iterations {

forall Matrix_Indices in Matrix do -

Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);
const delta = max reduce abs (Field [Matrix] - Next_Field);
Field [Matrix] = Next_Field; 3-d array to 3-d array-slice assignment |
if delta < epsilon then break; —

3

e
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Summary

Language refresher / introduction course

* Specification and implementation (body) parts, basic types
 Exceptions & Contracts

 Information hiding in specifications (‘private’)

* Generic programming

e Tasking

* Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)
* Abstract types and dispatching

* Data parallel operations

A data-parallel stencil

config const n = 100,
max_iterations
epsilon
initial_border = 1

const Matrix_w_Borders = {0 .. n+ 1,8 ..n+1,0 .. n+1},

Matrix = Matrix_w_Borders [1 .. n, 1 ..n, 1 .. n],
single_Border Matrix.exterior (1, 0, 0);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;
proc Stencil (M : [/x M
return (M [i - 1, 3,
AW+,
MO, G-,
MO, 3T,
FMI, g, ko
+ M, g, k-

tatrix_w_Borders */] real, (i, j, k) : index (Matrix))

A data-parallel stencil

config const n
max_iterations = 50,
epsilon = 1.06-5,
initial_border = 1.0;
const Matrix_w_Borders = {0 ..
Matrix
Single_Border
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix] real;

Nt 0. n+l, 0. 041}
Matrix_w_Borders [1 .. n,
Matrix.exterior (1, 0, 0);

1..m, 1.0,

proc Stencil (M : [/ Matrix_w_Borders */] real,

return (M [i - 1, j, K
AMIL+T, 3§

+ M, j-1, K

+M D, §+1, K

+MI, 5, k+1]

+ ML, §, k- 1D)

)

Function which calculates
a“stencil” value at a spot
inside a given matrix

A data-parallel stencil (cont.)

Field [Single_Border] = initial_border; Data parallel application
of the Stencil function
to the whole 3-d matrix
forall Matrix_Indices in Matrix do -

Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

for 1 in 1 .. max_iterations {

const delta = max reduce abs (Field [Matrix] - Next_Field);
Field [Matrix] = Next_Field;

if delta < epsilon then break;

real {

real {

Y Note the index type

A data-parallel stencil

config const n

max_iterations.

epsilon

initial_border =
const Matrix_w_Borders = {0 .

Matrix
single_Border
var Field
Next_Field : [Matrix]
proc Stencil (M
return (M [i - 1, j, k]
AW+, 5, K
+MLD, 5 -1, k]
AME, G+, K
+MI, 5, k+1]
+ M, g, k- 1D)

= Matrix_w_Borders [1 .. n, 1..n
Matrix.exterior (1, @, 0);
[Matrix_u_Borders] real,

[/% Matrix_w_Borders /] real, (i, i, k)

/6

100,

50,

1.0E-5,

1.9;
n+1,0

/stencil --n=500

LN+, 0. n+1),
L1 ..n],

real

index (Matrix))

A data-parallel stencil

config const n
max_iterations
epsilon

50
CLir

0E-5,

initial_border = 1.0;

const Matrix_w_Borders = {0

Matrix Matrix_w_Borders [1 .. n, 1
Matrix.exterior (1, 0, 0);
: [Matrix_w_Borders] real,

Single_Border
var Field
Next_Field : [Matrix]

proc Stencil (M : [/+ Matrix_w_Borders #/1 real, (i, j, k)

return (M [i - 1, j,
FMOE+, 3,
+MI, §-1,
M, G,
+M [, j, k+
+ ML, 3, k- 1) /

A data-parallel stencil

n

6;

+1,0..n+1,0.. 01},
n, 1.0,

real

: index (Matrix))

Configuration constants can be |
set via command line options:

real {

real {

anything on this slide |
still not perfectly clear?

(cont.)

Field [Single Border] = initial_border;

for 1 in 1

max_iterations {

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta =

Field [Matrix] = Next_Field;

if delta < epsilon then break;

max reduce abs (Field [Matrix] - Next_Field);

Data parallel (divide-and-conquer)
application of the max function to
the component-wise differences.

“3-d data-parallel version” of (Haskell):

foldr max minBound § zipWith (-) field next_field

A data-parallel stencil

config const n = 100,
max_iterations = 50,
epsilon = 1.06-
initial_border = 1.0; o
const Matrix_w_Borders = {0 .. n+ 1,0 ..n+1,8 .. n+1},
Matrix = Matrix_w_Borders [1 .. n, 1 ..n, 1 ..n],
single_Border = Matrix.exterior (1, 0, 0);
var Field : [Matrix_w_Borders] real,
Next_Field : [Matrix]

Defining domains to be used
for multi-dimensional array
declarations and assignments. |

real;
proc Stencil (M : [/ Matrix_w_Borders «/] real, (i, j
return (M [i - 1, j, k]
+MI+1, 5, K
+MI, G -1, k]
+MIOE, o+, kD
+MUO, 5, k+1]
+M L, 3, k- 10)

k) : index (Matrix)) : real {

A data-parallel stencil (cont.)

Field [Single_Border] = initial_border;

for 1dn 1 .. max_iterations {

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta

max reduce abs (Field [Matrix] - Next_Field);
Field [Matrix] = Next_Field;

if delta < epsilon then break;
¥

A data-parallel stencil (cont.)

Field [Single Border] = initial_border;

or 1dn 1 .. max_iterations {

forall Matrix_Indices in Matrix do
Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

const delta = max reduce abs (Field [Matrix] - Next_Field);
Field [Matrix] = Next_Field;

if delta < epsilon then break;

3}

anything on this slide |
still not perfectly clear?
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Introduction to Concurrency

Forms of concurrency

Why do we need/have concurrency?

« Physics, engineering, electronics, biology,

« Sequential processing is suggested by most core computer architectures
yet (almost) all current processor architectures have concurrent elements
... and most computer systems are part of a concurrent network.

« Strict sequential processing is suggested by widely used programming languages.

w Sequential programming delivers some
fundamental components for concurrent programming

w but we need to add a number of further crucial concepts

Introduction to Concurrency

Forms of concurrency

An engineer’s view on concurrency

= Multiple form
the actual environment and/or task at hand
& In order to model and control such a system, its needs to be considered
are often preferred over a single high-performance cpu
w The system design of usually strictly

Introduction to Concurrency

Models and Terminology

The concurrent programming abstraction

1. What appears sequential on a higher abstraction level,
is usually concurrent at a lower abstraction level:

w e.g. Concurrent operating system or hardware components,
which might not be visible at a higher programming level

2. What appears concurrent on a higher abstraction level,
might be sequential at a lower abstraction level:

o e.g. Multi-processing system,
which are executed on a single, sequential computing node

Introduction to Concurrency

References for this chapter
[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711621-X
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Introduction to Concurrency

Forms of concurrency

Why would a computer scientist consider concurrency?

to be able to connect computer systems with the real world
.. 10 be able to employ / design concurrent parts of computer architectures
to construct complex software packages (operating systems, compilers, databases, ...)
... to understand when sequential and/or concurrent programming is required
or: to understand when sequential or concurrent programming can be chosen freely
to enhance the reactivity of a system
.. to enhance the performance of a system
to be able to design embedded systems

Introduction to Concurrency

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:
* non-deterministic phenomena
non-observable system states

results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals ... throughout the execution)
non-reproducible e debugging?

=3 Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

e ‘concurrent’ is technically defined negatively as:
If there is no observer who can identify two events as being in
strict temporal sequence (i.e. one event has fully terminated before the
other one starts up), then these two events are considered concurrent.

e ‘concurrent’ in the context of programming and logic:
“Concurrent programming abstraction is the study of
interleaved execution sequences of the atomic

instructions of sequential processes.”
(Ben-Ari)

Introduction to Concurrency

Forms of concurrency

What is concurrency?
Working definitions:
Literally ‘concurrent’ means:
Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

Introduction to Concurrency

Forms of concurrency
A computer scientist’s view on concurrency

Overlapped I/0 and
computation

w Employ interrupt programming X
to handle 1/0 Parallel Machines &

distributed operating systems

w Add (non-deterministic)
communication channels

Multi-processor systems
e Add physical/real concurrency

Multi-programming
& Allow multiple independent programs

to be executed on one
Multi-tasking General network architectures
& Allow for any form of communicating,

& Allow multiple interacting processes g A

to be executed on one CP

Introduction to Concurrency

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:
+ non-deterministic phenomena
* non-observable system states

results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals ... throughout the execution)
« non-reproducible e debugging?

Meaningful employment of concurrent systems features:

« non-determinism employed where the underlying system is non-deterministic
« non-determinism employed where the actual execution sequence is meaningless
« synchronization employed where adequate ... but only there

1 Control & monitor where required (and do it right), but not more ...

=3 Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Multiple sequential programs (processes or threads)
which are executed concurrently.

PS. itis generally assumed that concurrent execution means that there
is one execution unit (processor) per sequential program
« even though this is usually not technically correct, it is still an often valid,
conservative assumption in the context of concurrent programming.

Introduction to Concurrency

Forms of concurrency

What is concurrency?
Working definitions:
« Literally ‘concurrent’ means:
Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]
echnically ‘concurrentis usually defined negatively as:
If there is no observer who can identify two events as being in strict
temporal sequence (i.e. one event has fully terminated before the
other one started) then these two events are considered concurrent.

Introduction to Concurrency

Forms of concurrency

A computer scientist’s view on concurrency

Terminology for physically concurrent machines architectures:

[singe instruction, single datal [multiple instruction, single data]

& Sequential processors & Pipelined processors

[singe instruction, multiple data] [multiple instruction, multiple data]

e Vector processors &= Multi-processors or computer networks

Introduction to Concurrency

Models and Terminology

Concurrency on different abstraction levels/perspectives

Large scale, high bandwidth interconnected nodes (“supercomputers”)
Networked computing nodes
Standalone computing nodes - including local buses & interfaces sub-systems

Operating systems (& distributed operating systems)

Individual concurrent units inside one CPU

Individual electronic circuits

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction




Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

(implicit interaction):
Multiple concurrent execution units
compete for one shared resource.
(explicit interaction):
Explicit passing of information and/or explicit synchronization.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Atomic operations:

Correctness proofs / designs in concurrent systems rely on the assumptions of

‘Atomic operations’ [detailed discussion later]:

+ Complex and powerful atomic operations ease the correctness
proofs, but may limit flexibility in the design

« Simple atomic operations are theoretically sufficient, but may lead to
complex systems which correctness cannot be proven in practice.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

(P(I) A Processes (1,5)) = ©Q(1,5)
where >Q means that Q does eventually hold (and will then sty true)
and § is the current state of the concurrent system

Examples:

* Requests need to complete eventually

 The state of the system needs to be displayed eventually
* No part of the system is to be delayed forever (fairness)
w Interesting liveness properties can be very hard to prove

Introduction to Concurrency

Introduction to processes and threads
Threads address space 1

Threads (individual control-
flows) can be handled:

address space n

« Inside the OS:
v Kernel scheduling.
+ Thread can easily
be connected to
external events (1/0)

process 1
process n

« Outside the OS:
o User-level scheduling,
+ Threads may need
to go through their
parent process
to access 1/O.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:
= Real-time systems s join the appropriate courses

Consider the sequence of interaction points only:
= Non-real-time systems s stay in your seat

— ‘
e

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Standard concepts of correctness:

* Partial correctness:

(P(1) Aterminates(Program(1,0))) = Q(I,0)
* Total correctness:

P(I) = (terminates (Program (1,0)) AQ(I,0))

where I, O are input and output sets,
Pisa property on the input set,
and Q is a relation between input and output sets

& do these concepts apply to and are sufficient for concurrent systems?

Introduction to Concurrency

Introduction to processes and threads

1 CPU per address space 1 address space n
control-flow
Specific configurations
only, e.g:
« Distributed pcontrollers.
Physical process
control systems:
1 cpu per task,
connected via a
bus-system.
Process management
(scheduling) not required,
5 Shared memory access
need to be coordinated.

=]
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Introduction to Concurrency

Introduction to processes and threads

Symmetric address space 1

address space n

All CPUs share the same
physical address space
(and access to resources).

process 1

w Any process / thread
can be executed on
any available CPU.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Correctness of concurrent non-real-time systems

[ I:

 does not depend on clock speeds / execution times / delays
 does not depend on actual interleaving of concurrent processes

w holds true for all possible sequences of interaction points (interleavings)

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:
— Termination is often not intended or even considered a failure

" (PU) AProcesses (1,S)) = 0Q.S)

where [1Q means that Q does always hold

(P(1) A Processes (1,5)) = <Q(1,S)
where <Q means that Q does eventually hold (and will then stay true)
and S is the current state of the concurrent system

Introduction to Concurrency

Introduction to processes and threads
1 CPU for all address space 1
control-flows

address space n

« 0S: emulate one CPU
for every control-flow:
Multi-tasking
operating system
& Support for memory
protection essential
e Process management
(scheduling) required

e Shared memory access
need to be coordinated.

Introduction to Concurrency

Introduction to processes and threads

Processes < Threads

Also processes can share memory and the specific definition of threads
is different in different operating systems and contexts:

= Threads can be regarded as a group of processes, which
share some resources (s process-hierarchy).

= Due to the overlap in resources, the attributes attached to
threads are less than for ‘first-class-citizen-processes'.

s Thread switching and inter-thread communication can be
more efficient than switching on process level

+ Scheduling of threads depends on the actual thread implementations:

* e.g. user-level control-flows, which the kernel has no knowledge about at all.
+ e.g. kernel-level control-flows, which are handled as processes with some restrictions.

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

Correctness vs. testing in concurrent systems:

Slight changes in external triggers may (and usually does)
result in completely different schedules (interleaving):

& Concurrent programs which depend in any way on external influences cannot be
tested without modelling and embedding those influences into the test process.
& Designs which are provably correct with respect to the specification
and are independent of the actual timing behavior are essential.
PS. some timing restrictions for the scheduling still persist
in non-real-time systems, e.g. ‘fairness’

Introduction to Concurrency

Models and Terminology
The concurrent programming abstraction

) (P(1) A Processes (1,5)) = 0Q(I,S)

where 0Q means that Q does always hold
Examples:

* Mutual exclusion (no resource collisions)
* Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)
* Specified responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

Introduction to Concurrency

Introduction to processes and threads
Processes address space 1

address space n

Process :=
Address space
+Control flow(s)

& Kernel has full
knowledge about all
processes as well as their
states, requirements and
currently held resources.

process 1
process n

Introduction to Concurrency

Introduction to processes and threads

Process Control Blocks

Process Control Blocks (PCBs)
Process Id

CPU state: Saved/restored information while context e
switches (incl. the program counter, stack pointer, ... (complete CPU state)
Memory attributes / privileges:

‘Memory spaces /
s

Process state:

{created, ready, executing, blocked, suspended, bored ...
Scheduling attributes

Priorities, deadlines, consumed CPU-time, ...

Memory base, limits, shared areas, .
Allocated resources / privileges:
Open and requested devices and files,

PCBs (links thereof) are commonly enqueued at a certain
state or condition (awaiting access or change in state)
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Process states Process states

« created: the task is ready to run, but « created: the task is ready to run, but

pre-emption or cycle done
not yet considered by any dispatcher not yet considered by any dispatcher preen

£ o e walting for admission i e waiting for admission
g g batch rea cuting
oy eady to run ready: ready to run ready: ready to run eation LTI e — dispatch hermination
 free i e — e,
: — - waiting for a free CPU : e waiting for a free CPU : tin cPu
§ § running: holds a CPU and executes § i suspehd (swap-out
g g : g anbock P P
s o R A - ready, suspended

H « blocked: not ready to run < blocked: not ready to run < blocked: not ready to run suspend (swap-out
£ £ £ ‘

s £ £ a
s waiting for a resource s waiting for a resource = waiting for a resource [T
wapin
suspended states: swapped out of susy states: swapped
Hocked eoad vap ) " eosd wap i) unblock
main memory . . blocked, suspended
TTm soped e ) (none time critical proc 8 rocesses HHHH

& waiting for main memory
s wapout) suspend Gwap-out swapout

space (and other resources) ce (and other resources
= dispatching and suspending can
w be independent modules
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UNIX processes UNIX processes Concurrent programming languages Concurrent programming languages

blocked block or synchronize
L1111

secondary
memory

secondary
memory

In UNIX systems tasks are created by ‘cloning Communication between UNIX tasks (‘pipes’) ) Language candidates
pid = fork ( Requirement

resulting in a duplication of the current process - . - ici 7 i = No suppos
° L L Concept of tasks, threads or other potentially concurrent entities e Explicit concurrency Implicit (potential) No support:
concurrency
Ada, C++, Rust ! « Eiffel, Pascal
o Lisp, Haskell, Caml . C
Miranda, and any other 5

functional langua

returning ‘0’ to the newly created process (the ‘child’ process)
... returning the process id of the child process to the creating process (the ‘parent’ proce: . N
. or returning 1 as C-style indication of a failure (in void of actual exception handling) . » 3 else { Frequently requested essential elements Chill

Erlang Fortran, Cobol, Basic...

Support for management or concurrent entities (create, terminate, ...) Go A Smalltalk, Squea = Libraries & interfaces
e Chapel, X10 "
Prolog (outside language

Support for contention management (mutual exclusion, ...) p
PP 8 P Esterel, Lustre, Signal definitions)

Frequent usage:

. often implemented as: exec (* utable file 3 - 3 B
xit (8); /* terminati d % ( exit Support for synchronization (semaphores, monitors, ...)

perror (“pipe broken®);
ata_pipe [01);
/* wait for the termination of one / t (1);

All net languages .
8 « POSIX

+ MPI (Messag
Passing Interface)

P . Java, Scala, Clojure = Wannabe concurrency
Support for communication (message passing, shared memory, rpc ...) Algol 68, Modula-2, « Ruby Python
Support for protection (tasks, memory, devices, ...) Modula [mostly broken due to

. linterpreter locks]
_pipe [0]

== Introduction to Concurrency : Introduction to Concurrency

Languages with implicit concurrency: e.g. functional programming Summary

Implicit concurrency in some programming schemes Concurrency - The Basic Concepts

icksort in a functional language (here: Haskell) * Forms of concurrency
o-n * Models and terminology
gsort (x
. + Abstractions and perspectives: computer science, engineering
Pure functional prc s side-effect free
« Parameters can be evaluated independently - could run concurrently

-ds ‘minism, atomicity, in
in concurrent systems
Some functional languages allow for lazy evaluation, i.e. sub- « Processes and threads
expressions are not necessarily evaluated completely
borderline = oncepts and notions
& If n equals zero then the evaluation of g(n) and h(n) can be stopped (or not even be started).
& Concurrent program parts should be interruptible in this case. * Concurrent programming language:
Short-circuit evaluations in imperative languages assume explicit sequential execution: * Explicit concurrency: e.g. Ada, Chapel
il « Implicit concurrency: functional programming - e.g. Haskell, C:
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Mutual Exclusion

Mutual exclusion: Atomic load & store operations

Atomic load & store operations

& Assumption 1: every individual base memory cell (word) load and store access is atomic
s Assumption 2: there is no atomic combined load-store access
G : Natural := @; -- assumed to be mapped on a 1-word cell in memory

task body P1 is task body P2 is task body P3 is
begin begin begin
G:=1 G
Gi=G+G;
end P1;

w What is the value of G

=3 Mutual Exclusion

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := @;
task body PO is Nt is
begin
loop
------ non_critical_section_0; % - non_critical_section_1;
loop exit when \ endl oop’ - loop exit when

end loop

end loop;
end PO;

scatter.
if

end if
into the non-critical sections

Mutual Exclusion

Mutual exclusion: Third attempt

type Critical Section_State is (In_CS, Out_CS);
C1, €2: Critical Section_State := Out_CS;

task body P1 is
begin
loop

task body P2 is
begin

oop
- non_critical_section_1;

- non_critical_section_2;
1oop

exit when
end loop

loop
exit when
end loop

end loop;

end loop;
end P1;

end P2;

1
| -

Mutual Exclusion Mutual Exclusion

References for this chapter Problem specification
[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming

The general mutual exclusion scenario
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

« N processes execute (infinite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.

w Safety property ‘Mutual exclusion”:

Instructions from critical sections of two or more processes
must never be interleaved!

More required properties:

* No deadlocks: If one or multiple processes try to enter their
critical sections then exactly one of them must succeed.

« No starvation: Every process which tries to enter one of
his critical sections must succeed eventually.
Efficiency: The decision which process may enter the critical section must be made
efficiently in all cases, i.e. also when there is no contention in the first place.

=
e

Mutual Exclusion Mutual Exclusion

Mutual exclusion: Atomic load & store operations Mutual exclusion: First attempt

Atomic load & store operations L UCCIROU e
Turn: Task_Token
task body PO is
& Assumption 1: every individual base memory cell (word) load and store access is atomic .
begin
& Assumption 2: there is no atomic combined load-store access s

task body P1 is
begin

1oop
G : Natural := @

- non_critical_section_0;
-~ assumed to be mapped on a 1-word cell in memory

loop exit when end loop

non_critical_section_1;
loop exit when end loop
task body P1 is task body P2 is task body P3 is

begin begin begin end loop; end loop;
=1 =2 G end P end P1;
G=G+G G=G+G G=G+G

end P1; end P2; end P3

& Mutual exclusion?
e Deadlock?
= After the first global initialisation,  can have almost any value between 0 and 24

& Starvation?
wr After the first global initialisation, G will have exactly one value between @ and 24

& Work without contention?
wr After all tasks terminated, G will have exactly one value between 2 and 24

|
=3
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Mutual exclusion: Second attempt Mutual exclusion: Second attempt
type Critical_Section_State is (In_CS, Out_CS); type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS; C1, C2: Critical_Section_State := Out_CS;
task body P1 is task body P2 is task body P1 is task body P2 is
begin begin begin

loop Loop

1loop
- non_critical_section_1; ------ non_critical_section_2 ------ non_critical_section_1
1loop Loop 1oop

exit when exit when
end 1oop

begin
1oop
=== non_critical _section_2;
loop
exit when exit when
end loop end loop end loop

end loop;

end loop;
end P1;

end loop;
end P2;

end loop;
end P1;

end P2;
& Any better?

Mutual Exclusion =3 Mutual Exclusion

Mutual exclusion: Forth attempt Mutual exclusion: Forth attempt
type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;
task body P1 is

type Critical Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;
task body P2 is task body P1 is task body P2 is
begin begin begin
loop

begin
loop 1loop

1oop

- non_critical_section_1;

------ non_critical_section_. ------ non_critical_section_1; non_critical_section_2;
1oop loop 1oop loop
exit when exit when

exit when exit when
end loop end loop end loop. end loop
end loop; end loop; end loop;
end P1; end P2;

end loop;
end P1;

end P2;
& Making any progress?

Mutual Exclusion

Problem specification

The general mutual exclusion scenario

« N processes execute (infinite) instruction sequences concurrently.

Each instruction belongs to either a critical or non-critical section.
w Safety property ‘Mutual exclusion’:

Instructions from critical sections of two or more processes
must never be interleaved!

« Further assumptions:

« Pre-and post-protocols can be executed before and after each critical section

« Processes may delay infinitely in non-critical sections.
« Processes do not delay infinitely in critical sections.

Mutual Exclusion

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := @
task body PO is

task body P1 is
begin
loop

begin
1oop
- non_critical_section_0; =

- non_critical_section_1;
loop exit when end loop

Loop exit when end loop

end loop;

end loop;
end Po;

end P1;

ocks up, if there is no contention

Mutual Exclusion

Mutual exclusion: Third attempt

type Critical Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Ou
task body P1 is task body P2 is
begin begin
loop 1o0p

---=-- non_critical_section_1; ------ non_critical_section_2;
loop

exit when
end loop

loop
exit when
end loop

end loop;

end loop;
end P1;

end P2

& Any better?

Mutual Exclusion

Mutual exclusion: Decker’s Algorithm
type Task_Range is mod 2;
type Critical_Section_State is (In_CS, Out_CS);
€SS : array (Task_Range) of Critical_Section_State := (others
Turn : Task_Range Task_Range’First;

out_Cs);
task type One_Of_Two_Tasks 1oop
(this_Task : Task_Range); e
if
task body One_Of_Two_Tasks is
other_Task : Task_Range
= this_Task + 1;

loop
exit when
begin end loop
- non_critical _section
end if:
end loop

end One_Of_Tuo_Tasks;




Mutual Exclusion

Mutual exclusion: Decker’s Algorithm
type Task_Range is mod 2;

type Critical Section_State is (In_CS, Out_CS);

€SS : array (Task_Range) of Critical_Section_State
Turn : Task_Range := Task_Range’First;

(others => 0ut_CS);

task type One_Of _Two_Tasks

1o0p
(this_Task : Task_Range);

exit when

if
task body One_Of_Two_Tasks is

other_Task : Task_Range 1oop
:= this_Task + 1; exit when

end loop

begin
- non_critical_section
end if
end loop.

end One_Of _Two_Tasks;

Mutual Exclusion

Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
Asetof N Processes P, ..

Py competing for mutually exclusive execution of their critical regions.
Every process P; out of Py...Py supplies: a globally readable number t; (‘ticket’) (initialized to‘0')
+ Before a process P enters a critical section:

+ P;draws anew number t; > t;;Vj # i

+ pyisallowed to enter the critical section ff: /j # i: ¢, < t; or t;
+ Aftera process let a critical section:

o Presetsitst; =0

0

Issues:

& Can you ensure that processes won't read each others ticket numbers while still calculating?
& Can you ensure that no two processes draw the same number?

Mutual Exclusion

Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1; C : Flag := 0;
task body Pi is task body Pj is
L : Flag;

L : Flag;

exit when exit when
end loop. end loop

end loop; end loop;
end Pi; end Pj;

= Does that work?

Mutual Exclusion

Mutual exclusion: memory cell reservation
type Flag is Natural range 0..1; C : Flag

=9
task body Pi is task body Pj is
L : Flag; L : Flag;
begin

loop

loop
exit when Untouched and L exit when Untouched and L = @
end loop end loop

end loop; end loop;
end Pi; end Pj;

w Does that work?

- =
o]

Mutual Exclusion

Mutual exclusion: Peterson’s Algorithm
type Task_Range is mod 2;

type Critical Section_State is (In_CS, Out_CS);

€SS : array (Task_Range) of Critical_Section_State := (others => Out_CS);
Last : Task_Range := Task_Range’First;
task type One_Of_Two_Tasks

(this_Task : Task_Range);

task body One_Of_Two_Tasks is
other_Task : Task_Range
= this_Task + 1; loop

begin exit when

----=- non_critical_section
or else
end loop

end One_Of_Two_Tasks;

Mutual Exclusion

Mutual exclusion: Bakery Algorithm
No_Of _Tasks : constant Positive

type Task_Range is mod No_Of Tasks;

Choosing :

array (Task_Range) of Boolean
Ticket

:= (others => False);
array (Task_Range) of Natural

:= (others => 0);
. loop
task type P (this_id: Task_Range); exit when
task body P is
begin or else
loop
—----- non_critcal_section_1; or else

and then

end loop.
exit when not

end loop end loop;

end P;

Mutual Exclusion

Mutual exclusion: atomic test-and-set operation
type Flag is Natural range 0..1; C : Flag

=0;
task body Pi is

task body Pj is
L : Flag; L : Flag;
begin

loop

1oop

exit when exit when
end loop end loop

end loop; end loop;
end Pi; end Pj;

=3 Mutual Exclusion

Mutual exclusion: memory cell reservation
type Flag is Natural range 0..1; C

Flag := 0;
task body Pi is prn——— task body Pj is
L : Flag; needs to clear L

Flag;
reservations

loop

exit when Untouched and L = 0;

exit when Untouched and L = @
end loop end loop

end loop; end loop;
end Pi; end Pj;

]
o]

Mutual Exclusion

Mutual exclusion: Peterson’s Algorithm
type Task_Range is mod 2;

type Critical Section_State is (In_CS, Out_CS);

€SS : array (Task_Range) of Critical_Section_State
Last : Task_Range := Task_Range’First;

:= (others => 0ut_CS);

task type One_Of_Two_Tasks
(this_Task : Task_Range);

task body One_Of_Two_Tasks is
other_Task : Task_Range

= this_Task + 1; loop

begin exit when

non_critical_section

or else
end loop

R - J end One_Of_Two_Tasks;

Mutual Exclusion

Mutual exclusion: Bakery Algorithm
constant Positive
type Task_Range is mod No_OF _Tasks;
Choosing
Ticket

No_Of _Tasks :

array (Task_Range) of Boolean

(others
array (Task_Range) of Natural

= (others =
loop
task type P (this_id: Task_Range); gt
task body P is
begin or eISE™
loop
~——-—- non_critcal _sec[ "
& Extensive and communication
intensive protocol
(even if there is no contention)

end loop
exit when not

end loop end loop;

— |
|

Mutual Exclusion

Mutual exclusion: atomic exchange operation
type Flag is Natural range 0..1; C : Flag

task body Pi is task body Pj is
L Flag := 1; L: Flag :=1;
begin
loop
1oop
exit when exit when
end loop end loop

end loop; end loop;
end Pi; end Pj;
& Does that work?

=3 Mutual Exclusion

Mutual exclusion ... or the lack thereof
Count o;

task body Enter is task body Leave is

. 100 loop . 100 loop
= Count - 1;
end loop;
end Enter; end Leave;

What is the value of Count after both programs complete?

Mutual Exclusion

Problem specification

The general mutual exclusion scenario

« N processes execute (infinite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section

e Safety property ‘Mutual exclusion’:

Instructions from critical sections of two or more processes
must never be interleaved!

More required properties:

* No deadlocks: If one or multiple processes try to enter their critic-
al sections then exactly one of them must succeed,

« No starvation: Every process which tries to enter one of
his critical sections must succeed eventually.

« Efficiency: The decision which process may enter the critical section must
be made efficiently in all cases, i

Iso when there is no contention.

Mutual Exclusion

Beyond atomic memory access

Realistic hardware support

Atomic test-and-set operations:

Atomic exchange operations:
 [emp:=L;L:=C; C:=Temp]

Memory cell reservations:
« 1:& ¢ - read by using a special instruction, which puts a ‘reservation’ on C
* ... calculate a <new value> for C .
C: L <new value>;
succeeds iff C was not manipulated by other processors or devices since the reservation

Mutual Exclusion

Mutual exclusion: atomic exchange operation
type Flag is Natural range 0..1; C : Flag
task body Pi is
L ¢ Flag := 1
begin begin
loop

loop
loop 1oop

task body Pj is
L : Flag :=

exit when exit when
end loop end loop.

end loop; end loop;
end Pi; end Pj;

0x00000000

for_enter: for_leave:
, #100 , #100
end_for_enter end_for_leave

Negotiate who goes first

Critical senmu

Indicate critical section completed J

for_enter for_leave
end_for_enter: end_for_leave:




Count x00000000

0x00000000 Count.
Lock: x00000000 ; #0 means unlocked

0x00000000 ; #0 means unlocked Lock:

0x00000000 Count:
0x00000000 ; #0 means unlocked Lock

0x00000000
0x00000000 ; #0 means unlocked
, =Lock , =Lock

, =Count ount , =Count
s Any context switch ! ; .

needs to clear
reservations

, =Lock , =Lock
Count.
! . Any context switch
needs to clear
reservations

for_enter: for_leave: for_enter: for_leave: for_enter:

end_for_enter

for_leave: for_enter: for_leave:
. , #e
end_for_leave end_for_enter

fail_enter:

end_for_enter end_for_leave end_for_enter end_for_leave end_for_leave

fail_enter: fail_leave: fail_enter:

fail_leave: fail_enter: fail_leave: fail_leave:

fail_enter ; if locked , failleave ; if locked , fail_enter ; if locked , failleave ; if locked
; lock value 5 lock value
lock lock

, fail_leave ; if locked , fail_enter ; if locked , fail_leave
) lock value L ; lock value .

try lock b ; try lock
if touched , fail_enter ; if touched
sync memory ; sync memory

, fail_enter ; if locked

; lock value

b ; try lock

, fail_enter ; if touched
; sync memory

; if locked
; lock value

, [r3] ; try lock

, fail_leave ; if touched

; sync memory

, [r3]
, fail_leave

Critical section |

1
Critical section Critical section

Critical section Critical section

1 1
Critical section Critical section Critical section

; sync memory sync memory
; unlock value ; unlock value
; unlock unlock
1 . 5 S
_leave for_enter _enter
end_for_leave: end_for_enter: end_for_enter.

for_leave _enter
end_for_leave end_for_enter:

0x00000000
0x00000000 ;

, =Lock

, =Count

#0 means unlocked

wia—

Mutual Exclusion Mutual Exclusion Mutual Exclusion

Any context switch
needs to clear
reservations

: Asks for permission Mutual exclusion Beyond atomic hardware operations Beyond atomic hardware operations
for_enter: for_leave: | Count 0x00000000 ‘

end_for_enter
fail_enter:

. [
, fail_enter ; if locked
= ; lock value
1 ; try lock
, fail_enter ; if touched
; sync memory

— 1
Critical section

; sync memory
; unlock value
; unlock
for_enter
end_for_enter:

end_for_leave

fail leave

fail_leave

[r3]
, fail_leave

for_leave
end_for_leave:

if locked
lock value
try lock

if touched
sync memory

Critical section |

; sync memory
; unlock value
; unlock

Mutual Exclusion

Beyond atomic hardware operations

Semaphores

Types of semaphores:

+ Binary semaphores: restricted to [0, 1] or [False, True] resp.
Multiple V (Signal) calls have the same effect than a single call,
« Atomic hardware operations support binary semaphores.

« Binary semaphores are sufficient to create all other semaphore forms

* General

(counting

number; (range lim-

ited by the system) P and V increment and decrement the semaphore by one.

+ Quantity semaphores: The increment (and decrement) value for
the semaphore is specified as a parameter with P and V.

w Alltypes of semaphores must be initialized:

often the number of processes which are allowed inside a critical section, i.e. 1",

0x00000000
x00000001
ena

ount .
Any context switch
needs to clear
for_enter: .

reservations
end_for_enter
wait_1:

; if Semaphore = 0
; dec Semaphore

| Critical section |

; inc Semaphore
; update

for_leave:

100

end_for_leave

wait_2:

[r3l

, wait 2

1
[r3]

wait_2

L #
for_leave

end_for_leave:

; if Semaphore = 0
dec Semaphore

; sync_memory

Critical section |

; inc Semaphore
; update

Any context switch
needs to clear
reservations

for_enter:
end_for_enter
enter_strex_fail:
, [41 ; tag [r4] as exclusive
, [r41 ; only if untouched
, enter_strex_fail

for_enter
end_for_enter:

Asks for forgiveness
Count |

for_leave:

end_for_leave
leave_strex_fail:

, [r41 ; tag [r4] as exclusive
1

L0041 ; only if untouched
, leave_strex_fail

, 0
for_leave

end_for_leave:

w Light weight solution — sometimes referred to as “lock-free” or “lockless.

0x00000000
0x00000001
=Sema
Count.

for_enter:

end_for_enter

. 3]
, wait_1 ; if Semaphore

Critical section |

for_enter
end_for_enter:

0x00000000
0x00000001

Any context switch
needs to clear

for_enter: .
reservations

end_for_enter

wait_1:

; if Semaphore
dec Semaphore

- Critical section
signal_ e

; inc Semaphore
try update
if touched
sync memory

, signal 1

for_enter
end_for_enter:

, =Sema

for_leave:

end_for_leave

[r3l

, Wait_2 ; if Semaphore

Critical section

Al
for_leave
end_for_leave:

for_leave:

end_for_leave
wait_2:

, wait_2 ; if Semaphore
) ; dec Semaphore
2 [r3]
, wait_2
; sync_memory.
Critical section
signal_2: —

inc Semaphore

; sync memory

, #
for_leave
end_for_leave:

Semaphores

Basic definition (Dijkstra 1968)

Assuming the following three conditions on a

shared memory cell between processes:

« asetof processes agree on a variable § operating as a

flag to indicate synchronization conditions

« an atomic operation P on S
P(S)

for ‘passeren’ (Dutch for ‘pass’):

v this is a potentially delaying operation

« an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S):

e then the variable § is called a Semaphore.

0x00000000
0x00000001

. =Sema

, =Count

for_enter:

end_for_enter

. 03]

, wait_1 ; if Semaphore
L ; dec Semaphore
, [r31 ; update

ction
| Critical section |

or_enter
end_for_enter:

for_leave:

end_for_leave

, [r3l

, wait_2 ; if Semaphore = @
f ; dec Semaphore

, I3 ; update

Critical section |

for_leave
end_for_leave:

Mutual Exclusion

Semaphores

Semaphore := 1;

task body Pi is
begin
loop
- non_critical_section_i;

end loop
end Pi;

e Works?

task body Pj is

begin

- non_critical_section_j;

Semaphores

...as supplied by operating systems and runtime environments

« asetof processes P;...Py agree on a variable
as a flag to indicate synchronization conditions

« an atomic operation Wait on S: (aka ‘Suspend_Until_True’,‘sem_wait,

Process P, : Wait (5):
if then

« an atomic operation Signal on S: (aka ‘Set_True,

Process P : Signal ()

w then the variable S is called a Semaphore in a scheduling environment.

0x00000000

0x00000001

, =Sema

, =Count

UM Any context switch
needs to clear

for_enter: .
reservations

end_for_enter

, [r31
, wait_1 ; if Semaphore
#1 ; dec Semaphore
, 3] ; try update
, wait1 ; if touched
5 sync_memory _

Critical section

for_enter
end_for_enter:

operating

P,

sem_post; ...)

then

else

, =Sema
, =Count

for_leave:

)

end_for_leave

. 03]
, wait 2

for_leave
end_for_leave:

; if Semaphore = 0
dec Semaphore
try update
if touched

| Critical section |

Mutual Exclusion

Semaphores

Semaphore := 1

task body Pi is

task body Pj is

begin begin

loop

end loop;
end Pi;

oop

------ non_critical_section_j;

end loop;

end Pj;




Mutual Exclusion - Mutual Exclusion : Mutual Exclusion

Semaphores Semaphores Summary

Mutual Exclusion
sk body Pi is task body Pj i task body Pj is . e c .
* Definition of mutual exclusion

non_critical_section_i; non_critical_section_j;

non_critical_section_i; section_j;  Atomic load and atomic store operations

« ... some classical errors

« Decker's algorithm, Peterson’s algorithm
« Bakery algorithm

end loop ¢ Realistic hardware support
end Pj; « Atomic test-and-set, Atomic exchanges, Memory cell reservations
* Semaphores
« Basic semaphore definition

maphores
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Sanity check
Do we need to? - really?

int i; {declare globally to multiple threads}
i if 1> n (i=0;}

{in one thread} {in another thread}

What's the worst that can happen?

Communication & Synchronization

Towards synchronization

Condition synchronization by flags
Assumption: word-access atomicity:

i.e. assigning two values (not wider than the size of a‘word’)
to an aligned memory cell concurrently:

x:i=0 | 1= 500

will result in either x = @ orx = 500 — and no other value is ever observable

Communication & Synchronization

Basic synchronization
by Semaphores
Basic definition (Dijkstra 1968)
Assuming the following three conditions on a shared memory cell between processes:

« aset of processes agree on a variable § operating as a
flag to indicate synchronization conditions
an atomic operation P on S — for ‘passeren’ (Dutch for ‘pa
P(S) . 11 e this is a potentially delaying operation
aka: ‘Wait, ‘Suspend_Until_True/, ‘sem_wait ...
an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’)
V(S):

aka ‘Signal, ‘Set-True, ‘sem_post, ...

= then the variable § is called a Semaphore.

1
a
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Sanity check

Do we need to? - really?

int i; {declare globally to multiple threads}

i+

{in one thread}

(in another thread}

& Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

yet perhaps it is an 8-bit integer.

& Unaligned manipulations on the main memory will usually not be atomic

yet perhaps it is a aligned.

& Broken down to a load-operate-store cycle, the operations will usually not be atomic

yet perhaps the processor supplies atomic operations for the actual case.
& Many schedulers interrupt threads irrespective of shared data operations

et perhaps this scheduler is aware of the shared data.

w Local caches might not be coherent

yet perhaps they are.

ey
||
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Towards synchronization

Condition synchronization by flags

Assuming further that there is a shared memory area between two processes:

« Aset of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

||
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Towards synchronization

Condition synchronization by semaphores

var sync

process P1;
statement X;

statement Y;
end P1;

semaphore

process P2;
statement A;

statenent B;
end P2;

Sequence of operations: A =~ B;[X | A] = Y;[X,Y | B]

Communication & Synchronization

Overview

Synchronization methods

Shared memory based synchronization
« Semaphores & C, POSIX — Dijkstra
Conditional critical regions & Edison (experimental)
Monitors & Modula-1, Mesa — Dijkstra, Hoare,
Mutexes & conditional variables s POSIX
Synchronized methods Java, C#,
Protected objects = Ada
Atomic blocks = Chapel, X10

Message based synchronization

« Asynchronous messages e e.g. POSIX,
e e.g. Ada, CHILL, Occam, ...
* Remote invocation, remote procedure call & e.g. Ada,

« Synchronous messages

Communication & Synchronization

Sanity check

Do we need to? - really?
int i; (declare globally to multiple threads}
i+t; if i >n {i=0;}
{in one thread} {in another thread}

& Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

itis an 8-bit integer.

& Unaligned ! .
=Gy Even if all assumptions hold:

“rhaps it is a aligned.

e Broken down to) How to expand this code? ’n be atomic

s for the actual case.

& Many schedulersmermraprmTeasTTrespecveoT STATEd data GPErations

yet perhaps this scheduler is aware of the shared data.

& Local caches might not be coherent

yet perhaps they are.
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Towards synchronization

Condition synchronization by flags
var Flag : boolean := false;

process P1; process P2;
statement X; statement A;
until
statement Y; statenent B;
end P1; en

Sequence of operations: A =~ B;[X | A] = Y;[X,Y | B]

=3 Communication & Synchronization

Towards synchronization
Mutual exclusion by semaphores
var mutex : semaphore := 1;

process P1; process P2;
statement X; statement A;

statement Z; statenent C;
end P1; end P2;

Sequence of operations:
A=~B~GX~Y~Z[XZ|ABCLACI|XYZ,-[B|Y]

Communication & Synchronization

Motivation
Side effects
Operations have side effects which are visible ...
either

w ... locally only

(and protected by runtime-, os-, or hardware-mechanisms)
or

w ... outside the current process

w If side effects transcend the local process then all
forms of access need to be synchronized.

Communication & Synchronization

Sanity check

Do we need to? - really?
int i; (declare globally to multiple threads}
i+t if 1> n {i=0;}
{in one thread} {in another thread}
e The chances that such programming errors turn out are usually small and some im-
plicit by chance synchronization in the rest of the system might prevent them at all.

(Many effects stemming from asynchronous memory accesses are interpreted
as (hardware) ‘glitches), since they are usually rare, yet often disastrous.)
& On assembler level on very simple CPU architectures: synchronization by
employing knowledge about the atomicity of CPU-operations and inter-
rupt structures is nevertheless possible and utilized in practice.

In anything higher than assembler level on single core, predictable p-controllers

& Measures for synchronization are required!
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Towards synchronization

Condition synchronization by flags

Assuming further that there is a shared memory area between two processes:

« Aset of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but ..
is not suitable for general mutual exclusion in critical sections!

... busy-waiting is required to poll the synchronization condition!

== More powerful synchronization operations
are required for critical sections

Communication & Synchronization

Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is
type Suspension_Object is limited private;
procedure Set_True
procedure Set_False
function Current_State
procedure nd_Un:

: in out Suspension_Object);
in out Suspension_Object);
Suspension_Object) return Boolean;
True (S : in out Suspension_Object);
private
t specified by the language

s & This is "queueless” and can translate
end Ada.Synchronous_Task_Control;

into a single machine instruction.

only one task can be blocked at Suspend_Until_True!
(Progran_Error will be raised with a second task trying to suspend itself)

& no queues! & minimal run-time overhead
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Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

type Suspension_Object is Limi+—Tivate;

orwise: | out Suspension_Object)
Jy ... otherwise ;
= for special cases O I out Suspension_Object)

L speﬁsmn

(\\

“rocedure int in out 9

- not specified hy the; :m\;g

end Ada. Synchronous gl COlkrd

only one task can beb\l(ked at Suspend_Until_True!
(Progran_Error will be raised with a second task trying to suspend itself)

& no queues! e minimal run-time overhead
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Towards synchronization
Semaphores in POSIX

pshared s actually a Boolean indicating whether the
semaphore s © be shared between processcs

sem_init (sem_t *sem_location, int pshared, unsigned int value);
sem_destroy  (sem_t xsem_location);
sem_wait (sem_t #sem_location);
sem_trywait  (sem_t xsem_location);
sem_timedwait (sem_t #sem_location, const struct timespec xabstime);
sem_post. (sem_t *sem_location);

sem_getvalue (sem_t *sem_location, int *value);

+value indicates the number of waiting processes as a
negative integer in case the semaphore value is zero
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Distributed synchronization

Conditional Critical Regions

Basic idea:

« Critical regions are a set of associated code sections in different processes,
which are guaranteed to be executed in mutual exclusion:

Shared data structures are grouped in named regions

and are tagged as being private resources.

Processes are prohibited from entering a critical region,

when another process is active in any associated critical region.

+ Condition synchronisation is provided by guards:

+ When a process wishes to enter a critical region it evaluates the guard (under mu-

tual exclusion). If the guard evaluates to false, the process is suspended / delayed.

* Generally, no access order can be assumed w potential livelocks

Communication & Synchronization

Centralized synchronization
Monitors

buffer;
export append, take;
var (+ declare protected vars *)
procedure append (I : integer);
procedure take (var I : integer);
begin

(* initialisation *) How to implement
L conditional synchronization?

:‘2\
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Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (X); Suspend_Until_True (X);

w Could raise a Progran_Error as multiple tasks potentially suspend on the same semaphore
(occurs only with high efficiency semaphores which do not provide process queues)

Communication & Synchronization
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Towards synchronization

Semaphores in POSIX

n_t mutex, cond[2]; void (priority_t P)
typedef emun {low, high} priority_t; 9

int waiting; . (&mutex);

int busy; busy

(&cond[high], &waiting);

void (priority_t P) it (waiting < 0) {

( 1_post. (&condlhighl);
t (8nutex);

if (busy) {

© (8nutex); tvalue (8cond[low], Bwaiting);

(cond[P1); Deadlockt || i Gwaiting <o) €
Livelock? | C (&cond[low]);
¢ (anutex); Mutual exclusion? | 1z ¢
= — (mutex);
133

Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (Y); Suspend_Until_True (X);
Set_True (X); Set_True (V);

end B; end A;

w Will result in a deadlock (assuming no other Set_True calls)

Communication & Synchronization

Communication & Synchronization

Distributed synchronization
Conditional Critical Regions

buffer : buffer_t;

process producer; process consumer;
loop loop

when when
end end

end loop; end loop;
end producer; end consumer;

Towards synchronization

Semaphores in Java since 2000
Semaphore (int permits, boolean fair)
void  acquire 0
void acquire (int permits)
void  acquireUninterruptibly (int permits) wait
boolean tryAcquire O L —
boolean tryAcquire (int permits, long timeout, TimeUnit unit)
int availablePermits O

protected void  reducePermits (int reduction) check and manipulate |

int  drainPermits

void release O

void  release (int permits)
protected Collection <Thread> getQueuedThreads ()

int  getQueuelength

boolean hasQueuedThreads

boolean isFair O

String toString O

administration
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Centralized synchronization
Monitors with condition synchronization
(Hoare ‘74)
Hoare-monitors:

Condition variables are implemented by semaphores (Wait and Signal).
Queues for tasks suspended on condition variables are realized

A suspended task releases its lock on the monitor, enabling another task to enter.

More efficient evaluation of the guards:

the task leaving the monitor can evaluate all guards and the right tasks can be activated.

Blocked tasks may be ordered and livelocks prevented.

Distributed synchronization

Review of Conditional Critical Regions

Well formed syn: blocks and sync conditions.

Code, data and synchronization primitives are associated (known to compiler and runtime)

All guards need to be re-evaluated, when any conditional critical region s left:

w all involved processes are activated to test their guards

& there is no order in the re-evaluation phase s potential livelocks

Condition synchronisation inside the critical code sections

requires to leave and re-enter a critical region.

As with semaphores the conditional critical regions are distributed all over the code.

& on alarger scale: same problems as with semaphores

(The language Edison (Per Brinch Hansen, 1981) uses conditional critical regions for synchroniz-
ationina mulﬂprc(essov environment (each processis associated with emcﬂy one pio(essorl )

=3 Communication & Synchronization

Centralized synchronization

Monitors with condition synchronization
buffer;
export append, take;
var BUF : array [ .. 1 of integer;
top, base 0..size-
NumberInBuffer integer;
spaceavailable, itemavailable : condition;
procedure append (I : integer);
begin
1F Number nBuffer = size then
spaceavailable);
end iF;
BUF [top] := I;
NumberInBuffer := NumberInBuffer + 1;
top := (top + 1) mod size;
(itemavailable)
end append; ..

| o
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Towards synchronization

Malicious use of "queueless semaphores"

with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B; task A;
task body B is task body A is
begin begin

Suspend_Until_True (V); Suspend_Until_True (X);
Suspend_Until_True (X); Suspend_Until_True (Y);

end B; end A;

« Will potentially result in a deadlock (with general semaphores)
oraProgram_Error in
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Towards synchronization

Review of semaphores

« Semaphores are not bound to any resource or method or region
& Compiler has no idea what is supposed to be protected by a semaphore.
« Semaphores are scattered all over the code
& Hard to read and highly error-prone.
& Adding or deleting a single semaphore operation usually stalls a whole system.

> Semaphores are generally considered
inadequate for non-trivial systems.

(all concurrent languages and environments offer
efficient and higher-abstraction synchronization methods)

w Special (usually close-to-hardware) applications exist.
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Centralized synchronization

Monitors

(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:

Collect all operations and data-structures shared in critical regions in one place, the monitor.

Formulate all operations as procedures or functions.
Prohibit access to data-structures, other than by the monitor-procedures and functions.
Assure mutual exclusion of all monitor-procedures and functions.
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Centralized synchronization

Monitors with condition synchronization

procedure take (var I : integer);
begin
if NumberInBuffer = @ then
(itemavailable);
end if;
T := BUF[basel;
base := (baset1) mod size;
Nunber InBuffer := NumberInBuffer-
(spaceavailable);
end take; active in the monitor!
begin (x initialisation %)
Number InBuffer := 0;
top
base
end;

The signalling and the
waiting process are both




Communication & Synchronization

Centralized synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:
« Asignal is allowed only as the /ast action of a process before it leaves the monitor.
« Asignal operation has the side-effect of executing a return statement.
« Hoare, Modula-1, POSIX:
a signal operation which unblocks another process has the side-effect of blocking the cur-

rent process; this process will only execute again once the monitor is unlocked again

+ Asignal operation which unblocks a process does not block the caller,
but the unblocked process must re-gain access to the monitor.
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Centralized synchronization

Monitors in POSIX (‘/C’)

(types and creation)

Synchronization between POSIX-threads:
typedef .. pthread_mutex_t;
typedef .. pthread_mutexattr_t; <
typedef .. pthread_cond_t;
typedef .. pthread_condattr_t;

Attributes include:

semantics for trying to lock a mutex which
T islocked already by the same threa
int pthread_mutex_init  ( pthrea o sharing of mutexes and
const pthreal  condition variables between processes

int pthread_nutex_destroy ( pEhreat | iority ceiling

int pthread_cond_init  ( pthreat o clock used for timeouts
const pthreat
int pthread_cond_destroy ( pthread *

]
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Centralized synchronization

Monitors in POSIX (‘C’)

(operators)

int pthread_mutex_lock  ~C pthread_nutex_t *nutex);

int pthread_mutex_trylock < smutex);

int pthread_mutex_timedlock ¢ T Hmutex,
const ime);

' can be called

int pthread_mutex_unlock  ( pthread_nutex_t smutex); | o any time

pthread_cond_t *cond,
pthread_mutex_t #mutex)
pthread_cond_t

int pthread_cond_wait « anywhere

« multiple times
int pthread_cond_timedwait
*abstime);

bthread_cond_t *cond);
pthread_cond_t cond);

int pthread_cond_signal
int pthread_cond_broadcast
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Centralized synchronization

Monitors in Visual C++

using namespace System;
using namespace System: :Threading
private: integer data_to_protect;

void Reader() void Writer()
{try { {try {
Monitor: :Enter (data_to_protect); Monitor: :Enter (data_to_protect);
Monitor: :Wait (data_to_protect); write protected data
. read out protected data Monitor: :Pulse (data_to_protect);
3
finally {
Monitor.Exit (data_to_protect);
¥

3}
finally {
Monitor::Exit (data_to_protect);

. =
a

Communication & Synchronization

Centralized synchronization

Monitors in Modula-1

« procedure wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

« procedure send (s):
If a process is waiting for the condition variable s, then the process at the top of

the queue of the highest filled rank is activated (and the caller suspended).

* function awaited (s) return integer:
check for waiting processes on s.

=]
| &
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Centralized synchronization

Monitors in POSIX (‘/C’)

(types and creation)

Synchronization between POSIX-threads:
- pthread_mutex_t;
pthread_nutexattr_t;
pthread_cond_t;

Undefined while locked
typedef . pthread_condattr_t; — —

int pthread_mutex_init  ( pthread_nutex_t  mutex,
Const pthread_nutexattr_t xattr);

int pthread_mutex_destroy ( pthread_mutex_t  *mutex);

pthread_cond_t *cond,
const pthread_condattr_t attr);
pthread_cond_t *cond);

int pthread_cond_init  (
int pthread_cond_destroy

Undefined while threads are waiting

\
=3
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Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pth: _t mutex;
buffer_not_full;
pth nd_t buffer_not_empty;
int count, first, last;
int buf [BUFF_SIZE];
} buffer;

int append (int item, buffer #8) { int take (int item, buffer *8) {
HREAD_MUTEX_LOCK (88->nutex); PTHREAD_MUTEX_LOCK (8B->mutex);
while (B->count == BUFF_SIZE) { while (B->count == 0) {
PTHRE T THRE

«
88->buffer_not_empty,
88->nutex);

«
88->buffer_not_full,
88->mutex) ;

(8B->nutex); (88->nutex);
(

88->buffer_not_empty) ; 88->buffer_not_full);

return @; return 0;
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Centralized synchronization

Monitors in Visual Basic

Inports Systen
Inports Systen. Threading
Private Dim data_to_protect As Integer = 0
Public Sub Reader Public Sub Writer
Try Try
Monitor Enter (data_to_protect) Monitor Enter (data_to_protect)
Monitor.Wait (data_to_protect) write protected data
. read out protected data Monitor.Pulse (data_to_protect)
Finally Finally
Monitor Exit (data_to_protect) Monitor Exit (data_to_protect)
End Try End Try
End Sub End Sub

]
&a
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Centralized synchronization

Monitors in Modula-1

resource_control;

allocate, dealls

ocate;

VAR busy : BOOLEAN; free :

PROCEDURE allocate;

IF busy THEN
busy := TRUE;

busy := false;
END.

(free) END;

(free) THEN (free);

Communication & Synchronization

int pthread_nutex_lock

int pthread_mutex_trylock
int pthread_nutex_timedlock

int pthread_mutex_unlock  (

int pthread_cond_wait

int pthread_cond_timedwait (

int pthread_cond_signal

int pthread_cond_broadcast

Centralized synchronization

Monitors in POSIX (‘/C’)

(operators)

« pthread_nutex_t mutex);
« pthread_nutex_t smutex);
q pthread_nutex_t smutex,
const struct timespec #abstime);

pthread_nutex_t smutex);

unblocks ‘at least one’ thread

preTTaT=CONY =T CONT,

pth|
const stri unblocks all threads

M;ad,cond,( *eond);

pthread_cond_t *cond);

Communication & Synchronization

#define BUFF_SIZE 10
typedef struct { :
int co

int bu

} buffer

int append (int item,
_MUTEX_LOCK
while (B->count
88-;
&8~

L
88->b
return 0;

Centralized synchronization

_nutex_t mutex;
it buffer_not_full;
it buffer_nes—rrt
unt, first, last;l  ,eed 1o be called
' [BUFF_SIZE]; with a locked mutex

int take (int *item, buffer B) {

while hn

(8B->mutex) ;

better to be called

>buffer_not_full,

(88=>tex); PTHF ] L
PTHE
uffer_not_empty);
return 0;

after unlocking all mutexes.
QL) | (as itis itself potentially blocking) |

(88->mutex);

oty

88->buffer_not_full);

||
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Monitor mon = new Monit

Centralized synchronization

Monitors in Java

or();

Monitor.Condition Condvar = mon.new Condition();

public void reader
throws InterruptedEx
mon. enter();
Condvar.await();

read out protected data

mon. leave();

public void writer
ception {

mon.enter();

throws InterruptedException

write protected data

Condvar.signal();
mon. leave();

the Java library monitor
Connects data or condition
variables to the monitor
by convention only!

Centralized synchronization

Monitors in POSIX (‘C’)

(types and creation)

Synchronization between POSIX-threads:
typedef . pthread_nutex_t;
typedef .. pthread_nutexattr_t;
typedef .. pthread_cond_t;
typedef ... pthread_condattr_t;

int pthread_mutex_init  (

pthread_mutex_t ~ #mutex,

const pthread_nutexattr_t xattr);

int pthread_mutex_destroy (

int pthread_cond_init  (

pthread_mutex_t

*mutex);

pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_destroy (

pthread_cond_t *cond);
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Centralized synchronization

Monitors in POSIX (‘C’)

(operators)

pthread_nutex_lock «
pthread_nutex_trylock  (
pthread_nutex_timedlock (

pthread_nutex_t *mutex);
pthread_nutex_t #mutex);
pthread_nutex_t smutex,

const struct timespec xabstimal

pthread_nutex_unlock <4——— pthread_nutex t ndefined

fread_mutex_t |
pthread_cond_t

pthread_cond_wait pthread_cond=" |
e

pthread_cond_timedwait T

if called ‘out of order’
i.e. mutex is not locked

pthread_nutex_t FIEeX,
const struct timespec abstime);

int pthread_cond_signal
int pthread_cond_broadcast (

pthread_cond_t scond);
pthread_cond_t *cond);
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Centralized synchronization
Monitors in C#

using System;
using System. Threading;
static long data_to_protect =

static void Reader()
Ctry €
Monitor.Enter (data_to_protect);
Monitor.Wait (data_to_protect);
. read out protected data
by
finally {
Monitor.Exit (data_to_protect);
¥
}

static void Writer()
Ctry €
Monitor Enter (data_to_protect);
. write protected data
Monitor.Pulse (data_to_protect);
)
finally {
Monitor Exit (data_to_protect);
)
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Centralized synchronization

Monitors in Java

(by means of language primitives)

Java provides two mechanisms to construct a monitors-like structure:

 Synchronized methods and code blocks:
all methods and code blocks which are using the synchronized
tag are mutually exclusive with respect to the addressed class.

Notification methods:

wait, notify, and notifyAll can be used only in
synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.
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Centralized synchronization

Monitors in Java
(by means of language primitives)
Considerations:

1. Synchronized methods and code blocks:

+ In order to implement a monitor all methods in an object need to be synchronized.
w any other standard method can break a Java monitor and enter at any time.

* Methods outside the monitor-object can synchronize at this object.

w itis impossible to analyse a Java monitor locally, since lock ac-
cesses can exist all over the system.

* Static data is shared between all objects of a class.

e access to static data need to be synchronized with all objects of a class.

Synchronize either in static synchronized blocks: synchronized (this.getClass()) (.}
or in static methods: public synchronized static <method> (..}
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Centralized synchronization

Monitors in Java

P ple: usage of external variables)

public void StartWrite () throws InterruptedException {
synchronized (0k 4
synchronized €
if (writing | readers >
wai tinghiriters++;

3 else {
writing = true;
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Centralized synchronization

Monitors in Java

Per Brinch Hansen (1938-2007) in 1999:

Java’s most serious mistake was the decision to use the sequential

part of the language to implement the run-time support for its paral-
lel features. It strikes me as absurd to write a compiler for the sequen-
tial language concepts only and then attempt to skip the much more

difficult task of implementing a secure parallel notation. This wish-
ful thinking is part of Java’s unfortunate inheritance of the insecure

C language and its primitive, error-prone library of threads methods.

"Per Brinch Hansen is one of a handful of computer pioneers who was responsible for advan-
cing both operating systems development and concurrent programming from ad hoc tech-
niques to systematic engineering disciplines.” (from his IEEE 2002 Computer Pioneer Award)
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Centralized synchronization

Criticism of monitors

* Mutual exclusion is solved elegantly and safely.
 Conditional synchronization is on the level of semaphores still

v all criticism about semaphores applies inside the monitors

= Mixture of low-level and high-level synchronization constructs.

1
a
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Centralized synchronization

Monitors in Java

(by means of language primitives)
Considerations:

2. Notification methods: wait, notify, and notifyAll
« wait suspends the thread and releases the local lock only
& nested wait-calls will keep all enclosing locks.
notify and notifyAll do not release the lock!
w methods, which are activated via notification need to wait for lock-access.

Java does not require any specific release order (like a queue) for wait-suspended threads

w livelocks are not prevented at this level (in opposition to RT-Java).
There are no explicit conditional variables associated with the monitor or data.

w notified threads need to wait for the lock to be released
and to re-evaluate its entry condition.

=
e
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Centralized synchronization

Monitors in Java

P ple: usage of external variables)

public void StopWrite () {
synchronized ) {
synchronized
synchronized {

if (waitinghiriters > 0) {

waitinghriters--;
i ; // wakeup one writer

3 else {

writing = false;
ToRead. n 11 O; // wakeup all readers

readers = waitingReaders;
waitingReaders = ©;
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Centralized synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be de-
signed and analyzed considering the implementation of all involved methods and guards:

= New methods cannot be added without re-evaluating the class!

Re-usage concepts of object-oriented programming do not translate to
synchronized classes (e.g. monitors) and thus need to be considered carefully.

w5 The parent class might need to be adapted
in order to suit the global synchronization scheme.
= Inheritance anomaly (Matsuoka & Yonezawa ‘93)
Methods to design and analyse expandible synchronized systems exist, yet they

are complex and not offered in any concurrent programming language
Alternatively, inheritance can be banned in the context of synchronization (e.g. Ada).
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Centralized synchronization

Synchronization by protected objects
Combine
the encapsulation feature of monitors.
with
the coordinated entries of conditional critical regions
to:
= Protected objects

All controlled data and operations are encapsulated.

Operations are mutual exclusive (with exceptions for read-only operations).
Guards (predicates) are syntactically attached to entries.

No protected data is accessible (other than by the defined operations).

Fairness inside operations is guaranteed by queuing (according to their priorities).
Fairness across all operations is guaranteed by the "internal progress first" rule.
Re-blocking provided by re-queuing to entries (no internal condition variables).
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Centralized synchronization

Monitors in Java
(by means of language primitives)
Standard monitor solution:

declare the monitored data-structures private to the monitor object (non-static).
introduce a class ConditionVariable:

public class ConditionVariable {

public boolean wantToSleep = false;

b
introduce synchronization-scopes in monitor-methods:
w synchronize on the adequate conditional variables first and
= synchronize on the adequate monitor-object second,

make sure that all methods in the monitor are the correct syn

make sure that no other method in the whole system is
synchronizing on or interfering with this monitor-object in any way e by convention.

|
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Centralized synchronization

Monitors in Java

ltiple-read ple: usage of external variables)

public void StartRead () throws InterruptedException {
synchronized 4
synchronized ¢
if (writing | waitingWriters > @) {
wai tingReaders++;
i wa
3 else {
readers++;
[ 1. wa
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Centralized synchronization

Monitors in POSIX, Visual C++, C#, Visual Basic & Java

w All provide lower-level primitives for the construction of monitors.
= All rely on convention rather than compiler checks.

w Visual C++, C+ & Visual Basic offer
data-encapsulation and connection to the monitor.

= Java offers data-encapsulation (yet not with respect to a monitor).

= POSIX (being a collection of library calls)
does not provide any data-encapsulation by itself.

= Extreme care must be taken when employing

object-oriented programming and synchronization (incl. monitors)
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Centralized synchronization

Synchronization by protected objects

(Simultaneous read-access)

Some read-only operations do not need to be mutually exclusive:
protected type Shared_Data (Initial : Data_Item) is
function return )_Ttem;
procedure Write (New_Value : Data_Item);
private
The_Data : Data_Ttem := Initial;
end Shared_Data_Item;

protected functions can have ‘in’ parameters onl
and are not allowed to alter the private data (enforced by the compiler).
protected functions allow simultaneous access (but mutual exclusive with other operations)

there is no defined priority between functions and other protected operations in Ada.

| o

Communication & Synchronization

Centralized synchronization

Monitors in Java

(multiple-readers-one-writer-example: usage of external conditional variables)

public class Readershriters {
private int  readers ;
private int  waitingReaders = 0;
private int  waitingWriters = @;
private boolean writing alse;
Conditionvariable new Conditionvariable ();
ConditionVariable new ConditionVariable ();
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Centralized synchronization

Monitors in Java

ple: usage of external variables)

public void StopRead ()
synchronized
synchronized
readers--;
if (readers == 0 & waitingWriters > @) {
waitinghriters--;
ToWrit
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Centralized synchronization
Nested monitor calls

Assuming a thread in a monitor is calling an operation in
another monitor and is suspended at a conditional variable there:
w the called monitor is aware of the suspension and allows other threads to enter.
& the calling monitor is possibly not aware of the suspension and keeps its lock!
w the unjustified locked calling monitor reduces the
system performance and leads to potential deadlocks.

Suggestions to solve this situation:

« Maintain the lock anyway: e.g. POSIX, Java
« Prohibit nested monitor calls: e.g. Modula-1

« Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada
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Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)
Condition synchronization is realized in the form of protected procedures
combined with boolean predicates (barriers): = called entries in Ada:
Buffer_Size : constant Integer := 10;
type  Index s mod Buffer Size;
subtype Count  is Natural range @ .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;
protected type Bounded_Buffer is
entry Get (ten : out
entry ‘
private
First Index := Index’First;
Last Index Index’Last;
N Count = 0;
Buffer : Buffer_T;
end Bounded_Buffer;
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Centralized synchronization

Synchronization by protected objects

(Condition synchronization: entries & barriers)

protected body Bounded_Buffer is
entry Get (Item : out Data_Item) when
begin
Item := B
First := F
Num = N
end Get;

uffer (First);
irst + 1
un - 1;

entry Put (Item : Data_Ttem) when

end Bounded_Buffer;
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Centralized synchronization

Synchronization by protected objects

(Operations on entry queues)
The count attribute indicates the number of tasks waiting at a specific queue:

protected Block_Five is protected body Block_Five is
entry Proceed; entry Proceed

private when

Release : Boolean or Release is

begin
Release

end Proceed;

end Block_Five;

end Block_Five;
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Centralized synchronization

Synchronization by protected objects

(Entry families, requeue & private entries)
How to moderate the flow of incoming calls to a busy server farm?

type Urgency  is (urgent, not_so_urgent);
type Server_Farm is (primary, secondary);
protected Pre_Filter is

entry Reception (U : Urgency);
private

entry Server U : Urgency);
end Pre_Filter;

Communication & Synchronization

Shared memory based synchronization

POSIX

All low level constructs available

Connection with the actual data-struc-
tures by means of convention only

Extremely error-prone

Degree of non-determinism intro- P
duced by the ‘release some’ semantic vanavles.

“C’based
Portable

1
a
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Centralized synchronization

Synchronization by protected objects

(Withdrawing entry calls)

Buffer : Bounded_Buffer;
select
or

delay

-~ do something after 10 s.
end select;
select
else

-~ do something else

end select;

.|
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Centralized synchronization

Synchronization by protected objects
(Operations on entry queues)
The count attribute indicates the number of tasks waiting at a specific queue:
protected type Broadcast is protected body Broadcast is
entry Receive (M: out Message); entry Receive (M: out Message)
procedure Send (M Message) ; when i is
private begin
New_Message : Message; M = New_Message
Arrived : Boolean := False; Arrived >0;
end Broadcast; =Y
procedure Send (M: Message) is
New_Message
Arrived
end Send;
end Broadcast;
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Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)
protected body Pre_Filter
entry Reception (U : Urgency)
when Ser nt = @ or else Ser
begin
If U = urgent and then
r Server (primary);
else
r Server (secondary);
end if;
end Reception;
entry Server (for S in Ser (U : Urgency) when True is
begin null; -- might try something even more useful
end Server;
end Pre_Filter;
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Shared memory based synchronization

Java

Mutual exclusion available.
General notification feature (not
connected to other locks, hence

not a conditional variable)

Universal object orientation makes
local analysis hard or even impossible

Mixture of
high-level object oriented features and
low level concurrency primitives

Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;
select select

or then abort
delay -- meanwhile try something else
- do something after 10 s. T
end select;
select
select delay
then abort
else ;
- do something else - try to enter for 10 s.
end select; end select;

|
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Centralized synchronization
Synchronization by protected objects
(Entry families, requeue & private entries)
Additional, essential primitives for concurrent control flows:
 Entry families:
A protected entry declaration can contain

adiscrete subtype selector, which can be evaluated by the barrier (other parameters
cannot be evaluated by barriers) and implements an array of protected entries.

* Requeue facility:

Protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

“Internal progress firstrule: external tasks are only considered for queuing
on barriers once no internally requeued task can be progressed any further!

* Private entries:
Protected entries which are not accessible from outside the protected
object, but can be employed as destinations for requeue operations.
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Centralized synchronization

Synchronization by protected objects

(Restrictions for protected operations)

All code inside a protected procedure, function or entry is bound to non-blocking operations

Thus the following operations are prohibi

* entry call statements
delay statements
task creations or activations
select statements
accept statements
« ...as well as calls to sub-programs which contain any of the above
= The requeue facility allows for a
potentially blocking operation,
and releases the current lock!
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Shared memory based synchronization

C#, Visual C++, Visual Basic s

Mutual exclusion via
library calls (convention)

Data is associated with the

locks to protect it

Condition variables related to

the data protection locks

Mixture of

high-level object oriented features and
low level concurrency primitives
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Centralized synchronization

Synchronization by protected objects
(Barrier evaluation)
Barrier in protected objects need to be evaluated only on two occasions:
« on creating a protected object,
all barrier are evaluated according to the initial values of the internal, protected data.
on leaving a protected procedure or entry,
all potentially altered barriers are re-evaluated.
Alternatively an implementation may choose to evaluate barriers on those two occasions:
on calling a protected entry,
the one associated barrier is evaluated.

on leaving a protected procedure or entry,
all potentially altered barriers with tasks queued up on them are re-evaluated.

Barriers are not evaluated while inside a protected object or on leaving a protected function.
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Centralized synchronization

Synchronization by protected objects

(Entry families)

package Modes is package body Modes is
type Mode_T is protected body Mode_Gate is
(Takeoff, Ascent, Cruising, procedure Set_Mode
Descent, Landing); (Mode: Mode_T) is
protected Mode_Gate is in
procedure Set_Mode (Mode: Mode_T); Current_Mode := Mode;
entry ( b end Set_Mode;
private entry
Current_Mode : Mode_Type := Takeoff; (for Mode in
end Mode_Gate; when Current_Mode =
end Modes; begin null;
end Wait_For_Mode;
end Mode_Gate;
end Modes;

= Communication & Synchronization

Shared memory based synchronization

General

Criteria:

* Levels of abstraction
« Centralized versus distributed

Support for automated (compiler based)
consistency and correctness validation

Error sensitivity
Predictability
Efficiency
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Shared memory based synchronization

C++14

Mutual exclusion in scopes
Data is not strictly associated
with the locks to protect it
Condition variables related to
the mutual exclusion locks

Set of essential primitives without combin-
ing them in a syntactically strict form (yet?)
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Shared memory based synchronization

Rust Monior

Mutual exclusion in scopes
Data is strictly associated B

with locks to protect it ancainion P—
Condition variables related to

the mutual exclusion locks

Combined with the message passing

semantics already a power set of tools.

Concurrency features migrated .

to a standard library. (st Vope)
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Current developments
Atomic operations in X10
X10 offers only atomic blocks in unconditional and conditional form.
« Unconditional atomic blocks are guaranteed to be non-blocking,

which means that they cannot be nested and need to be implemented using roll-backs.
Conditional atomic blocks can also be used as a pure notification system

(similar to the Java notify method).

Parallel statements (incl. parallel, i.e. unrolled ‘loops)

Shared variables (and their access mechanisms) are not defined.

The programmer does not specify the scope of the locks (atomic blocks)

but they are managed by the compiler/runtime environment.

= Code analysis algorithms are required in order to provide efficiently,
otherwise the runtime environment needs to associate every atomic block with a global lock.
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Message-based synchronization

Message protocols

Synchronous message b
(receiver waiting)

Delay the receiver process until

* Sender becomes available

+ Sender concludes transmission

time | Smeronous

Communication & Synchronization

Message-based synchronization

Message protocols

Remote invocation .

Delay sender o receiver &
until the first rendezvous point ,

Pass parameters o

Keep sender blocked while

receiver executes the local procedure

Pass results

Release both processes out of the rendezvous

syncronous

1
a
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Communication & Synchronization

Shared memory based synchronization

Modula-1, Chill, Parallel Pascal, ...

« Fullimplementation of the
Dijkstra / Hoare monitor concept

The term monitor appears in many other
concurrent languages, yet it s usually not
associated with an actual language primitive.

.|
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Current developments
Synchronization in Chapel
Chapel offers a variety of concurrent primitives:

Parallel operations on data (e.g. concurrent array operations)
Parallel statements (incl. parallel, i.e. unrolled ‘loops’)
Parallelism can also be explicitly limited by serializing statements

Atomic blocks for the purpose to construct atomic transactions

Memory integrity needs to be | by means of syn;
(waiting for one or multiple control flows to complete)
andjor atomic blocks

Further Chapel semantics are still forthcoming .... so there is still hope for a
stronger shared memory synchronization / memory integrity construct.

il
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Message-based synchronization

Message protocols

Asynchronous message

Neither the sender nor the receiver is blocked:

« Message is not transferred directly
« Abuifer is required to store the messages

« Policy required for buffer sizes and
buffer overflow situations

ssyncrono
time |_Simeronous

||
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Message-based synchronization
Message protocols
Remote invocation
(simulated by asynchronous messages)

« Simulate two synchronous messages

« Processes are never actually synchronized

ime | omeronaus

Shared memory based synchronization

Ada

High-level synchronization support
which scales to large size projects

Full compiler support = [—
incl. potential deadlock analysis

Low-Level semaphores for very special case]

Ada has still
ho mainstream competitor
in the field of explicit concurrency.
(2018)

|
|
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Synchronization

Message-based synchronization

Synchronization model Message structure

« Asynchronous « arbitrary

« Synchronous « restricted to ‘basic’ types

+ Remote invocation « restricted to un-typed communications

Addressing (name space)

* direct communication
+ mail-box communication
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Message-based synchronization

Message protocols

Asynchronous message
(simulated by synchronous messages)

Introducing an intermediate process:

« Intermediate needs to be ac-
cepting messages at all times.

« Intermediate also needs to send
out messages on request.

& While processes are blocked in the sense of
synchronous message passing, they are not ac-
tually delayed as the intermediate is always ready.
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Message-based synchronization

Message protocols

Remote invocation (no results) I l

Shorter form of remote invocation which does - oo
not wait for results to be passed back imocation

« still both processes are actually
synchronized at the time of the invocation.

S
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High Performance Computing
Synchronization in large scale concurrency

High Performance Computing (HPC) emphasizes on

keeping as many CPU nodes busy as possible:

& Avoid contention on sparse resources.

w Data is assigned to individual processes rather than processes synchronizing on data.
& Data integrity is achieved by keeping the CPU nodes in approximate “lock-step”,

yet there is still a need to re-sync concurrent entities.

Traditionally this has been implemented using the
Message Passing Interface (MPI) while implementing separate address spaces.

& Current approaches employ partitioned address spaces,
i.e. memory spaces can overlap and be re-assigned. e Chapel, Fortress, X10.

& Not all algorithms break down into independent computation slices and so there is
aneed for memory integrity mechanisms in shared/partitioned address spaces.
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Message-based synchronization

Message protocols

Synchronous message
(sender waiting)

Delay the sender process until

* Receiver becomes available

« Receiver acknowledges reception
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Message-based synchronization

Message protocols

Synchronous message
(simulated by asynchronous messages)

Introducing two asynchronous messages

« Both processes voluntarily suspend them-
selves until the transaction is complete.
As no immediate communication takes place,
the processes are never actually synchronized.
The sender (but not the receiver) process
knows that the transaction is complete. ime oo |
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Message-based synchronization
Message protocols
Remote invocation (no results)
(simulated by asynchronous messages)

« Simulate one synchronous message

« Processes are never actually synchronized
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Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: & synchronous messages / remote invocations
Purpose last message(s) only’: e asynchronous messages

& Synchronous message passing in distributed systems requires hardware support.

w Asynchronous message passing requires the usage of buffers and overflow policies.

Can both communication modes emulate each other?
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Message-based synchronization

Message structure

« Machine dependent representations need to be taken care of in a distributed environment
« Communication system is often outside the typed language environment.
Most communication systems are handling streams (packets) of a basic element type only.

w Conversion routines for data-structures other then the basic element type are supplied
manually (POSIX, C)
. semi-automatic (CORBA)
. automatic (compiler-generated) and typed-persistent (Ada, CHILL, Occam2)
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Message-based synchronization

Message-passing systems examples:

one-to-one
many-to-one

KRR many-to-many

synchronous

5
£
35 method
message queues
message passing
essage passin,

t contents
v bytesstream
v v memory-blocks
v basic types

Java: e no message passing system defined

AN

R R R asynchronous
LY

=
H
3
£
£
Z
v
v
v

RS symmetrical

AN
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Message-based synchronization
Message-based synchronization in CHILL

CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif Télé et Télé

The CHILL language development was started in 1973 and standardized in 1979.
& strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)
del sensorBuffer buffer (32) int;
receive case

send (reading onous = (Ser in data) :

esac;

SensorChannel = (int) to consumertype;

send SensorChannel (reading) receive case

to consumer  ———— synchronous _|—>(SensorChannel in data): ..
esac:

1
a
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Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: & synchronous messages / remote invocations
Purpose last message(s) only: & asynchronous messages

& Synchronous message passing in distributed systems requires hardware support.

& Asynchronous message passing requires the usage of buffers and overflow policies.

Can both communication modes emulate each other?

Synchronous are emulated by a of asynchronous messages
in some systems (not identical with hardware supported synchronous communication).
Asynchronous communications can be emulated in

synchronized message passing systems by introducing a ‘buffer-task’

(de-coupling sender and receiver as well as allowing for broadcasts).

.|
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Message-based synchronization

Message structure (Ada)

package Ada.Streams is
pragna Pure (Streams);
type " is abstract tagged limited private;
type St is mod implementation-defined;
type Stream_Element_Offset is range implementation-defined;
subtype Strean_Element_Count is
Stream_Element_Offset range @..Stream_Element Offset’Last;
R nt_Array is
array (Stream_Element_Offset range <) of Stream_Element;
procedure Read (.) is abstract;
procedure Write () is abstract;
private
not specified by the language
end Ada.Streans;

il
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Message-based synchronization
Message-based synchronization in Occam2
Communication is ensured by means of a‘channel’, which:

« can be used by one writer and one reader process only
« and is synchronous:

CHAN OF INT SensorChannel:

INT reading
SEQ i = @ FOR 1000
e concurrent entities are
e synchronized at these points
11 read

INT data
SEQ i = 0 FOR 1000
SEQ
1
- employ data
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Message-based synchronization

Message-based synchronization in Ada

Ada supports remote invocations ((extended) rendezvous) in form of

« entry points in tasks
« full set of parameter profiles supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed then:
& parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

« Both tasks are synchronized at the beginning of the remote invocation (s ‘rendezvous')

« The calling task if blocked until the remote routine is completed (s ‘extended rendezvous’)
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Message-based synchronization

Addressing (name space)

Direct versus indirect:
send  <message> to  <process-name>
wait for <nessage> from <process-name>
send  <message> to  <mailbox>
wait for <nessage> from <nailbox>

Asymmetrical addressing:

send  <message> to
wait for <message>

e Client-server paradigm

|
|
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Message-based synchronization

Message structure (Ada)

Reading and writing values of any subtype S of a specific type T to a Strean:
procedure §'Virit (Stream : access Ada.Streams.Root_Stream_Type’Class;
Item : in T);
procedure §'Clas (Stream : access Ada.Streams.Root_Strean_Type’Class;
Iten : in T'Class);
procedure S'R (Stream : access Ada.Streams.Root_Strean_Type’Class;
Iten : out T);
procedure § (stream : access Ada.Streams.Root_Stream_Type’Class;
Iten : out T'Class)
Reading and writing values, bounds and discriminants
of any subtype S of a specific type T to a Strean:
procedure §'01 (Stream : access Ada.Streams.Root_Strean_Type’Class;
Iten : in T);
function §'Tnput (Stream : access Ada.Streams.Root_Stream_Type’Class) return T;
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Message-based synchronization
Message-based synchronization in Occam2
Communication is ensured by means of a‘channel’, which:

« can be used by one writer and one reader process only

« and s synchronous: ]

ssenti words
CHAN OF INT SensorChannel: Essential Occamz key

INT reading ALT PAR SEQ PRI
SEQ i = 0 FOR 1000 rOETIC

SEQ DATA TYPE RECORD OFFSETOF PACKED

-~ generate reading BOOL BYTE INT REAL
iptead CASE IF ELSE FOR FROM WHILE

L CE) FUNCTION RESULT PROC IS
ERI DO UL PROCESSOR PROTOCOL TIMER

SEQ SKIP STOP VALOF

— enploy data « Concurrent, distributed, real-time programming language!
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Message-based synchronization

Message-based synchronization in Ada

(Rendezvous)

<entry_name> [(index)] <parameters>
- waiting for synchronization
waiting for synchronization
waiting for synchronization
waiting for synchronization
—_ ~ accept <entry_name> [(index)]
<paraneter_profile>;
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Message-based synchronization

Addressing (name space)

Communication medium:

Connections Functionality
one-to-one buffer, queue, synchronization
one-to-many  multicast
one-to-all broadcast
many-to-one  local server, synchronization
all-to-one general server, synchronization

many-to-many  general network- or bus-system
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Message-based synchronization

Message-passing systems examples:

[LeRe————
wr ordered indirect
byte-level many-to-many message passing
w ordered [direct | indirect] i i y-block
level | | ¥l message passing

CHILL: “buffers’, "signal
wr ordered indirect

 no message passing system defined
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Message-based synchronization
Message-based synchronization in CHILL

CHILL s the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif élé, et

The CHILL language development was started in 1973 and standardized in 1979.
& strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)
dcl SensorBuffer bu (32) int;

receive case
(SensorBuffer in data) :
esac;

send SensorBuffer (reading);

SensorChannel = (int) to consumertype;

send SensorChannel (reading) receive case
to consumer (sensorChannel in data)
esac;
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Message-based synchronization

Message-based synchronization in Ada

(Extended rendezvous)

<entry_name> [(index)] <parameters>
- waiting for synchronization
waiting for synchronization
waiting for synchronization
waiting for synchronization
——————{ synchronized }————— —> accept <entry_name> [(index)]
blocked <parameter_profile> do

blocked - remote invocation

blocked - remote invocation

-~ remote invocation

return results_|———— — end <entry_nane>;

time
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Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)
[(index)]

<parameter_profil
chronization

bt <entry_nam

waiting for syn
waiting for synchronization

waiti for synchr zation
entry_nane> [(index)] <parameters> ——— —synchronized

Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

(Extended rendezvous)

ept <entry. [(index)]

b

Some things to consider
In contrast to protected-object-entries, task-entry bodies can call other blocking operations.

Communication & Synchronization

Message-based synchronization

Message-based synchronization in Ada

or task-entries:

Accept statements can be nested (but need to be different)
helpful e.g. to synchronize more than two tasks.
ements can have on handler (like any other c

asks which owns

(arrays of entries) are supported.
s) are supported.

== Communication & Synchron

Summary
Communication & Synchronization

 Shared memory based synchronization

Flags, condition variables, semaphores,
nitors, protected objec

onditional critical r
Guard evaluation times, nested monitor calls, deadlocks,

simultaneous reading, queue managemen
Synchronization and object orientation, blocking operations and re-queuing
Message based synchronization

ation models

Synchroni
Addressing modes
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Non-determinism

Non-determinism

Non-determinism by design

Dijkstras guarded commands (non-deterministic case statements):
if x<=y->n Selection is non-
Q =y deterministc for x=y
i
&= The programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result
All true case statements in any language are potentially concurrent and non-deterministic.

Numerical non-determinism in concurrent statements (Chapel)
writeln (x reduce [i in 1..10] exp (i));
writeln (+ reduce [i in 1..1000000] i = 2.0);

& The programmer needs to understand the
numerical implications of out-of-order expressions.

References for this chapter

[Ben-Ari06] [AdaRM2012]

M. Ben-Ari Ada Reference Manual - Lan-
Principles of Concurrent and Dis- guage and Standard Libraries;
tributed Programming ISO/IEC 8652:201x (E)

2006, second edition, Prentice-

Hall, ISBN 0-13-711821-X

[Barnes2006]

Barnes, John

Programming in Ada 2005

Addison-Wesley, Pearson education, ISBN-
13 978-0-321-34078-8, Harlow, England, 2006

=
e

Non-determinism

Non-determinism

ey
||

Non-determinism by interaction
Select function in POSIX

pselect(int n, fd_set is, fd_set , fd_set )
const struct timespec , sigset_t ssignask);
with:
« nbeing one more than the maximum of any file descriptor in any of the sets.
 after return the sets will have been reduced to the channels which have been triggered.
o the return value is used as success / failure indicator.

The POSIX select function implements parts of general selective waiting:
« pselect returns if one or multiple /O channels have been triggered or an error occured.

— Branching into individual code sections is not provided.
~ Guards are not provided
After return it is required that the following code

implements a sequential testing of all channels in the sets,

Non-determinism by design

Motivation for non-deterministic design

By explicitly leaving the sequence of evaluation or execution undetermined:

& The compiler / runtime environment can directly (i.e. without any analy-

sis) translate the source code into a concurrent implementation.

& The implementation gains potentially significantly in performance

& The programmer does not need to handle any of the details of a concur-

rent implementation (access locks, messages, synchronizations, ...)

A programming language which allows for
those formulations is required!

& current language support: Ada, X10, Chapel, Fortress, Haskell, OCaml, ..

Non-determinism

Non-determinism

Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept)

« Ifall conditions are true’
e identical to the previous form.
select If some condition evaluate totrue’
when <condition> => accept ..
or tions are treated

when <condition> => accept - Ifall conditions evaluate to ‘false’

& Progran_Error is raise
Hence it is important that the set of con-
ditions covers all possible states.

or
when <condition> => accept ..

end select;
This form is identical to
Dijkstra’s guarded commands.

Selective Synchronization

Message-based selective synchronization in Ada

Forms of selective waiting:

select_statement |
conditional_entry_call |
timed_entry_call |
asynchronous_select

underlying concept: Dijkstra’s guarded commands
implements ..
wait for more than a single rendezvous at any one time

time-out if no rendezvous is forthcoming within a specified time

. withdraw its offer to communicate if no is available
. terminate if no clients can possibly call its entries

| Non-determinism

Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept-else)

« Ifall currently open entries have no waiting
calls or all entries are close
e The else alternative s chosen, the as-
sociated statements executed and
the select statement completes

ect
when <condition> => accept
or
when <condition> => accept
or Otherwise e one of the open entries
when <condition> => accept with waiting calls is chosen as above.

AT This form never suspends the task.
<statenents>

This enables a task to withdraw its of-
end select;

fer to accept a set of calls if no
tasks are currently waiting.

Non-determinism

Definitions

Non-determinism by design:
A property of a computation which
may have more than one result.
Non-determinism by interaction:

A property of the operation environment which may
lead to different sequences of (concurrent) stimuli.

Non-determinism

Non-determinism by interaction

Selective waiting in Occam2

Guard1
Processl

Guard2
Process2

* Guards are referring to boolean expressions and/or channel input operations.

« The boolean expressions are local expressions, i.e. if none of them evaluates to true
at the time of the evaluation of the ALT-statement, then the process is stopped.

« Ifall triggered channel input operations evaluate to false, the process is sus-
pended until further activity on one of the named channels.

« Any Occam2 process can be employed in the ALT-statement
* TheALT- (there is also a version: PRI ALT).

Non-determinism

Selective Synchronization

Message-based selective synchronization in Ada

select
[guard] selective_accept_alternative
{ or [guard] selective_accept_alternative }
[ else sequence_of _statements ]
end select;

guard ::= when <condition> => selective_accept_alternative ::= accept_alternative |
delay_alternative |
terminate_alternative

accept_alternative  ::= accept_statement [ sequence_of_statements ]
delay_alternative delay_statement [ sequence_of_statements ]
terminate_alternative ::= terminate;
accept_statement ::= accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of_statements
end [entry_identifier]];
delay_statement delay until delay_expression; | delay delay_expression;

Non-determinism

Non-determinism by design

Dijkstra’s guarded commands (non-deterministic case statements):
if x<=y >moimx Selection is non-
Q x>y->m:=y deterministc for x=y
fi

e The programmer needs to design the alternatives as ‘parallel’ options:

all cases need to be covered and overlapping conditions need to lead to the same result
All true case statements in any language are potentially concurrent and non-deterministic.

Non-determinism

Non-determinism by interaction

Selective waiting in Occam2

& )

NumberInBuffer := NumberInBuffer + 1
Top := (Top + 1) REM Size
2

SEQ

Nurber InBuffer := NumberInBuffer - 1
Base := (Base + 1) REM Size

« Synchronization on input-channels only (channels are directed in Occam?):
& to initiate the sending of data (Take ! Buffer [Basel),
a request need to be made first which triggers the condition: (Request ? ANY)
CSP (Communicating Sequential Processes, Hoare 1978)

also supports non-deterministic selective waiting

Non-determinism

=3 Non-determinism

Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept-delay)

select
when <condition> accept ..

« Ifnone of the open entries have waiting
calls before the deadline specified by the
earliest open delay alternativ

when <condition> => accept .

when <condition> => accept .
the statements associated with it executed
« Otherwise &= one of the open entries

when <condition> => delay [untill with waiting calls is chosen as above

<statenents>

This enables a task to withdraw its of-

when <condition> => delay [until] ..  fertoacceptasetof callsif no other
<statements> task is calling after some time.

end select;

Selective Synchronization

Basic forms of selective synchronization

(select-accept)

« Ifnone of the entries have waiting calls
e the process s suspende
et until a call arrives.
accept If exactly one of the entries has waiting calls
o this entry s selected.
accept .. If multiple entries have waiting calls
w5 one of those is selected (non-determin-
accept . istically). The selection can be prioritized
by means of the real-time-systems annex.
The code following the select-
ed entry (if any) is executed and the
select statement completes.

end select;

Non-determinism

& This earliest delay alternative is chosen and

Selective Synchronization

Basic forms of selective synchronization

(select-guarded-accept-terminate)

« If none of the open entries have waiting
calls and none of them can ever be called
select again
& The terminate alternative is
chosen, i.e. the task is terminated.

when <condition> => accept

when <condition> => accept
This situation occurs if
when <condition> => accept v .. all tasks which can possibly call on
any of the open entries are terminated.
or ... all remaining tasks which can possibly
call on any of the open entries are waiting
. on select-terminate statements themselves
d select; terminate cannot be and none of their open entries can be
mixed with else or delay called either. In this case all those waiting-
- for-termination tasks are terminated as well.

when <condition> => terminate;




Non-determinism

Selective Synchronization
Message-based selective synchronization in Ada

Forms of selective waiting;

underlying
implements
. the possibility to withdraw an outgoing call

. this might be restricted if calls have already been partly proces:

Non-determinism

Non-determinism
Sources of Non-determinism

As concurrent entities are not in “lockstep” synchronization, they “overtake” each other
and arrive at synchronization points in non-deterministic order, due to (just a few):

* Operating systems / runtime environments:

ge p:
Networks & communication systems:
v Traffic will arrive in an unpredictable way (non-deterministic).
v Communication systems congestions are
Computing hardware
v Timers drift and clocks have granularities.
v Processors have out-of-order units.

sically: Physical systems (and computer systems connected to the physical world)
are intrinsically non-deterministic

Non-determinism
Non-determinism

Correctness of non-deterministic programs

Concrete:
Sconditionzly Every time you formulate a non-de-
terminstic statement like the one on
the left you need to formulate an
invariant which holds true whichever
alternative will actually be chosen,
P This i very similar to finding

g loop invariants in sequential programs

condition

<condition>

Non-determinism

Selective Synchronization

Conditional entry-calls

« Ifthe callis not accepted immediately
e The else alternative is chosen.

This is e.g. useful to probe the
of a server before commit-
ting to a potentially blocki

Example:
select
Light |
Lu

Non-determinism

Non-determinism

Correctness of non-deterministic programs

Partial correctness:
(P(I) Aterminates(Program(1,0))) = Q(I,0)
Total correctness:
P(I) = (terminates (Program (1,0)) A Q(I,0))
Safety properties:
(P(I) A\ Proc (1,8)) = 0Q(1,s)

where []Q means that Q does always hold
Liveness properties:
(P(1) A Processes (1,5)) = ©Q(1,S)

where <>Q means that Q does eventually hold (and will then stay true)
and S is the current stats the concurrent

Non-determinism

Summary

Non-Determinism

¢ Non-determimism by design:

« Benefits & considerations

¢ Non-determinism by interaction:
synchroniz
* Selective accepts
* Selective calls
 Correctness of non-determ c programs:
* Sources of non-determinism
« Predicates & invariants

Non-determinism

Selective Synchronization

Timed entry-calls

. Ifth p
line specified by the
The delay alternative is chosen.

Example: This is e.g. useful to withdraw an entry
select call after some specified time-out

There is only one entry-call and
one delay alternative.

Non-determinism

Non-determinism

Correctness of non-deterministic programs
w Correctness predicates need to hold true
irrespective of the actual sequence of interaction points.

Correctness predicates need to hold true
for all possible sequences of interaction points.

i.e. invariant predicates which are independent of the potential execution sequences,
rt the overall correctn:

ism
Selective Synchronization

Message-based selective synchronization in Ada

Forms of selective waitir

onditional_entry
timed_entry_call

underlying concept: Dijkstra’s guarded comma
implements
the possibility to escape a running code block due to an e

nt from outside this task.
(outside the scope of this course e check: Real-Time Systems)

Non-determinism
Non-determinism

Correctness of non-deterministic programs

For example (in verbal form);
‘Mutual exclusion accessing a specific resource holds true
for all possible numbers, sequences or interleavings of requ

invariant would for instance be that the number of writing
tasks inside a protected object i less or equal to one.

& Those invariants are the only practical way to g

arantee (in a logical sense)
correctness in concurrent / non-deterministi

systems,

(as enumerating all possible cases and proving them individually is in general not feasible)
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Data Parallelism

Vector Machines

Ny . .
-t Vectorization

e ’ Executed in parallel.

type Real_Precision = Float

type Scalar = Real_Precision
type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector

scale scalar vector = (scalar *) vector

This may be faster or slower
than a sequential execution

Data Parallelism

Vector Machines

Vectorization

Function'is |

“promoted” |
const Index = {1 .. 100000000}, —
Vector : [Index] real = 1.0,

Scale real = 5.1,
Scaled [Vector] real = Scale * Vector;

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;

type Vectors is array (Positive range <) of Real;

function =" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1'Range => Vector_1 (i) = Vector_2 (i));

References

[Bacon98]
). Bacon
Concurrent Systems
1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6.

[Ada 2012 Language Reference Manual]
see course pages or http://www.ada-auth.org/standards/ada 12.html
[Chapel 1.13 Language Specification Version 0.981]
see course pages or
http://chapel.cray.com/docs/latest/_downloads/chapelLanguageSpec.pdf
released on 7. April 2016

Data Parallelism

Vector Machines

Vectorization

type Real s digits 15;
type Vectors is array (Positive range <>) of Real;
function Scale (Scalar : Real; Vector : Vectors) return Vectors is
Scaled_Vector : Vectors (Vector’Range);
begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (i);
end loop;
return Scaled_Vector;
end Scale;

Data Parallelism

Vector Machines

Vectorization

type Real_Precision = Float
type Scalar = Real Precision

type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector

scale scalar vector = map (scalar ) vector

Data Parallelism

Data Parallelism

Vector Machines
Buzzword collection:

AltiVec, SPE, MMX, SSE,

Vectorization NEON, SPUAVX, .|

Translates into
CPU-level vector operations
type Real  is digits 15;
type Vectors is array (Positive range <>) of Real;
function Scale (Scalar : Real; Vector : Vectors) return Vectors is

Scaled_Vector : Vectors (Vector’Range);
begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (i);
end loop;
return Scaled_Vector;
end Scale;

Combined with
in-lining, loop unrolling and caching
this is as fast as a single CPU will g

Data Parallelism

Vector Machines

N .
= Reduction

type Real_Precision = Float
type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&&) True $ zipWith (=) v_1 v_2

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;

type Vectors is array (Positive range <») of Real;

function "=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

" A-chain is evaluated lazy sequentially.

Vector Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&&) True $ zipHith (=) v_1 v_2

Potentially concurrent, yet: |

[ Ex;uled lazy sequentially.

Data Parallelism

Vector Machines

N . .
al Vectorization

type Real_Precision = Float
type Scalar = Real_Precision

type Vector = [Real_Precision]
scale :: Scalar -> Vector -> Vector
scale scalar vector = map (scalar )

Potentially concurrent, yet:

Executed sequentially. |

vector

Data Parallelism

Vector Machines

Vectorization

const Index = {1 .. 100000000},
Vector : [Index] real = 1.0,
Scale  : real = 5.1,

Function is

spromoted” |

Scaled [Vector] real = Scale * Vector;

Data Parallelism

Data Parallelism

Vector Machines

Reduction

infinite |
s 15; recursion
type Real is digits 15; Bt
type Vectors is array (Positive range <») of Real;
function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_l = Vector_2);

Translates into
CPU-level vector operations |

" A-chain is evaluated lazy sequentially.

Ve

ctor Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]
equal :: Vector -> Vector -> Bool
equal )

Potentially concurrent, yet:
] !

Executed lazy sequentially.

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive ra
function Equal (Vector_1, Vector_2

nge <) of Real;
Vectors) return Boolean is (Vector_1 = Vector_2);

Translates into
CPU-level vector operations |

| A-chain is evaluated lazy sequentially.
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Vector Machines

A Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function Equal (Vector_1, Vector_2 : Vectors) return Boolean renames "=";

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

Data Parallelism

Vector Machines

Reduction

const Index = {1 .. 100800000},
Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool —_ ' e
(return v1 o= v2;) >y Type mismatch |

writeln (Equal (Vector_1, Vector_2));

Data Parallelism

Vector Machines

C
= General Data-parallelism
'ﬂfoﬂjﬂ:i WEROR MR OO A

i

const Mask : [1 .. 3, 1 .. 3] real = ((@, -1, @), (-1, 5, -1), (0,
proc Unsharp_Mask (P, (i, j) : index (Image)) real
{return + reduce (Mask * P [i -1 ..4+1, 31 .. 3+1D);)

Data Parallelism

Vector Machines

C
= General Data-parallelism

Cellular automaton transitions from a state S into the next state S"
s> 8 © Vc€E s:ic~ ¢ = xs,c) ie.allcells of a state
transition concurrently into new cells by following a rule 1.

Data Parallelism

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;
function "=" (Vector_1, Vector_2 : Vectors) return Boolean is

(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

Data Parallelism

Vector Machines

Reduction

const Index = {1 .. 100000000},
Vector_1, Vector_2 : [Index] real = 1.0;
proc Equal (v1, v2) : bool
{return 8& reduce (vl == v2);}

Function is
“promoted” |

Data Parallelism

Vector Machines

General Data-parallelism
(Ol

Data Parallelism

Vector Machines

General Data-parallelism

const Mask : [1 .. 3, 1 .. 3] real = ((@, -1, @), (-1, 5, -1), (0, -1, @));
proc Unsharp_Mask (P, (i, j) : index (Image)) : real

{return + reduce (Mask * P [i-1..1+1,3-1..+11);)
const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

Data Parallelism

Vector

C
= General Data-parallelism

Cellular automaton transitions from a state s into the next state S"
s> 8 © Vec€&E sic~ ¢ = 1s,c) ie.allcells of a state
transition concurrently into new cells by following a rule 1.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

Vector Machines

General Data-parallelism
TROOMTROIO!

Data Parallelism

Vector Machines
General Data-parallelism

RO A= Lo O MR O
Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations
..Eg_ "

31 real = ((0, -1, ®), (-1, 5, -1), (@, -1,
proc Unsharp Mask (P, (i, j) : index (Inage)) : real

(return + reduce (Mask * P [i=1..1+1, 3-1..3+11);}
n Image do Unsharp_Mask (Picture, px);

const Mask : [1 .. 3,1

const Sharpened_Picture = forall px

Data Parallelism

,.

Vector

C
= General Data-parallelism

Cellular automaton transitions from a state S into the next state "
s> 8 © VcE 8ic~ ¢ = 1s,c) ie.allcells of a state
transition concurrently into new cells by following a rule 1.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

John Conway’s Game of Life rule:

proc Rule (S, (i, §) : index (World)) : Cell {
const Population : index ({8 .. 9}) =

+ reduce Count (Cell.Alive, S [i -1 .

return (if Populatior

Il (Populatior == Cell.Alive) then Cell.Alive

else Cell.Dead);

Data Parallelism

const Index = {1 .. 100000000},

Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool

{return && reduce (v1 == v2);

Function is
“promoted”

Vector Machines

Reduction

-operations are

evaluated in a concurrent

divide-and-conquer

¥

(binary tree) structure.

Translates into CPU-level vector operauons

as well as multi-core or
fully nbu&ed nperahons

Data Parallelism

Vector Machines

General Data- parallellsm

.3

RO/

real = ((o, -1, @), (-1, 5, -1), (o,

Talne g

Data Parallelism

Vector

General Data-parallelism

Data Parallelism

 Data-Parallelism
* Vectorization
* Reduction
* General data-parallelism

¢ Examples
* Image processing
« Cellular automata

Summary

Data Parallelism
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References for this chapter Motivation and definition of terms Motivation and definition of terms

Scheduling

Purpose of scheduling Purpose of scheduling
[Stallings2001]
Stallings, William
Principles of Concurrent and Dis- Operating Systems
tributed Programming Prentice Hall, 2001 2 5 cour . c(C : ork
second edition, Prentice-Hall 2006 1. Ordering resource assignments (CPU time, network access,
& live, on-line application of scheduling algorithms.

vo scenarios for scheduling algorithms:

[AdaRM2012] - . L.
Ada Reference Manual - Lan- 2. Predicting system behaviours under anticipated loads.
ge and Standard Libraries;

& simulated, off-line application of scheduling algorithms.
/IEC 8652:201x (E)

Scheduling redictions are used:

« at compile time: to confirm the feasibility of the system, or to predict resource needs,

Uwe R. Zimmer - The Australian National University « at run time: to permit admittance of new requests or for load-balancing,

Scheduling : Scheduling =32 Scheduling : Scheduling

Motivation and definition of terms Definition of terms Definition of terms Definition of terms

Criteria Time scales of scheduling Time scales of scheduling Time scales of scheduling

pre-emption or eycle done pre-emption or cycle done
dwmlch dwpaxcn dlspalch
Process / user perspecive: HHHH

minimize the minimize deviation from given .. suspend (swap-out
ready, suspended ready, suspended
Waiting fime 11T suspend (swap-out il suspend (swap-out

Long-term pre-emption or cycle done

suspend (swap-out)

Response time swapin swapin

unblock unblock
Turnaround time blocked suspended blocked, suspended
tem perspective: ERRI RS

oo |1 Wb e 111 Mednrerm
maximize the ...

J— Hw blocksdy block or synchronize Mblocked block or synchronize Mblccked block or synchronize

Scheduling L Scheduling =3 Scheduling : Scheduling

Performance scheduling Performance scheduling Performance scheduling Performance scheduling

Requested resource times First come, first served (FCFS) First come, first served (FCFS) Round Robin (RR)

Tasks have an average time between instantiations of Waiting time: 0..11, average: 5.9 — Turnaround time: 3.12, averag g time verage: 5. ime: 3,12, average: Waiting time: 0.5, average: 1.2 - Turnaround time: 1..20, average:

and a constant computation time of As tasks apply concurrently for resources, the actual sequence of arrival is non-deterministic. w In this example: Optimized for swit initial respon
& hence e cheduling schema like FCFS can lead tc ent outc the average waiting times vary between 5.4 and 5

“Stretches out” long tasks.
the average turnaround times vary between 5.0 and

Bound maximal waiting time! (depended only on the number of tasks)
Shortest possible maximal turnaround time!

Scheduling : Scheduling == Scheduling = Scheduling

Performance scheduling Performance scheduling Performance scheduling Performance scheduling

Feedback with 2! pre-emption intervals Feedback with 2! pre-emption intervals - sequential Feedback with 21 pre-emption intervals - overlapping Shortest job first

it

Implement multiple

hierarchical ready-queu

Fetch processes from the priority 1
highest filled ready queue.

Dispatch more CPU time for .
lower priorities (2/ units)

dispatch 2

PI— ing time: 0.5, average: 1.5 - Turnaround time: 1..21, average: 5 Waiting time: 0..3, average: 0.9 — Turnaround time: 1..45, Waiting ti , ave 7~ Turna ime: 1..14, average: 6
priority i a2
sl Optimized for swift initial responses. Optimized for swift initial responses. Optimized for good average performance with minimal task-switches.

Pro lower ranks
may suffer starvation, | ] - sks and long tasks can suffer starvation. Prefers sho g tasks can suffer starvation. & Prefers short tasks but all tasks will be handled.

- and short tasks
New and short tasks wil o o Long tasks are delayed until all queues run empty! Good choi a swn and task switches are expensive!




Scheduling

Performance scheduling

Shortest job first

, average: 3.4 - Turnaround time:

, average:

=3 Scheduling

Performance scheduling

Highest Response Ration ' First (HRRF)

Waiting time: 0.9, average: 4.1 - Turnaround time: 2.1, average:

=3 Scheduling

Performance scheduling

Shortest Remaining Time First (SRT|

Waiting time:

average: 0.7 - Turnaround time: 1.21, average:

Scheduling

Performance scheduling

Comparison (in order of appearance)

e Blend betw

ortest-Job-First and First-Come-Fir:

= Optimized for good averages.

erministicarivalssquences w Prefers short tasks but long tasks gain preference over time. & Prefers short tasks and long tasks can suffer

Scheduling

Performance scheduling

Scheduling

Scheduling

Performance scheduling

Scheduling

Performance scheduling Performance scheduling

Comparison by shortest maximal waiting Comparison by shortest average waiting Comparison by shortest maximal turnaround Comparison by shortest average turnaround
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Scheduling

Predictable scheduling

Scheduling

Predictable scheduling

Scheduling Scheduling

Performance scheduling Predictable scheduling

Comparison overview Towards predictable scheduling ... Temporal scopes Temporal scopes

Selection Waiting Turnaround

Pre-
emption
Methods without any knowledge about the processes

long average &
short maximum
good average &
large maximum
short average &

‘max (W;) no long.
equalshare  yes bound

priority yes  veryshort

queues

long maximum

Methods employing computation time C; and elapsed time E;

s [IRIR(E) no medium medium

N W, +C, controllable
Hewe Fna (Y€ compromise

wide variance

controllable
compromise
very short

Scheduling
Predictable scheduling
Temporal scopes

Preferred Starvation
jobs

equal
short

short

short
controllable

short

possible?

Task requirements (Quality of service):

& Guaran
& Guaran
& Guaran

& Guaran

flow levels
tee re
leadlines
tee d

e Provide bounds for the variations in results

Examples:

Common attributes:

* Maximal execution time

- max. di
i min. delay

Common attributes:

« Deliver

=3 Scheduling

Predictable scheduling

media broadcasts, playing HD videos, live mixing audio/video,
0 users, Reacting to alarm situations, .

ing a signal to the physical world at the r

1
created

Scheduling
Predictable scheduling

1 10
created activated

Scheduling

Summary

Temporal scopes

Common temporal scope attributes

Scheduling

Temporal scopes can be:

Common attributes:

* Maximal execution time

-
= max. delay
L3 min. delay

created activated re-activated

suspended

terminated

Common attributes: Periodic

max. elapse time — L}
i

execution time = max.d.
Maximal execution tim < max.d

1
created

10

0 25

activated re-activated

suspended

terminated

Aperiodic

Sporadic / Transient

Deadlines can be:
[T ] “Hara

Y

5| “Firm”

§ usoftr

w controllers, routers, schedulers, streaming processes, ...

w periodic ‘on average'tasks, i.e. regular but not rigidly timed, ...

& user requests, alarms, 1/O interaction, ...

w single failure leads to severe malfunction and/or disaster
& results are meaningless after the deadline
w only multiple or permanent failures lead to malfunction

wr results are still useful after the deadline

* Basic performance scheduling

* Motivation & Terms
« Levels of knowledge / assumptions about the task set
« Evaluation of performance and selection of appropriate methods

Towards predictable scheduling

* Motivation & Terms
ories & Examples
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Safety & Liveness

Liveness
Fairness
Liveness properties:
(P(I) A Processes (1,5)) = <Q(1,S)
where ©Q means that Q does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation): Resources will be granted ...

* Weak fairness: ©[IR = ©G ... eventually, if a process requests continually.
Strong fairness: DGR = ©G ... eventually, if a process requests infinitely often.

Linear waiting: ©R = ©G ... before any other process had the same resource
granted more than once (common fairness in distributed systems).

First-in, first-out: ©R = ©G ... before any other process which applied for the same
resource at a later point in time (common fairness in single-node systems).

Safety & Liveness

Towards synchronization

Circular dependencies
var reserve_1, reserve_2, reserve_3 : semaphore := 1;

process P1; process P2; process P3;
statement X; statement A; statement K;

statement Z; statement C; statement M;
end P1; end P2; end P3;

Sequence of operations: A ~ B~ G;X =~ Y ~ ZK~ L ~ M;
[X.Z | A,B.C| KML[A,C | X.Y.Z | KMJ[A.C | K.LM | X,.Z}—[B | Y | L]

followed by a deadlock situation.

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).
3. No pre-emption:

resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

Safety & Liveness

References for this chapter

[Ben2006] [Chandy1983]
Ben-Ari, M Chandy, K, Misra, Jayadev & Haas, Laura
Principles of Concurrent and Dis- Distributed deadlock detection
tributed Programming Transactions on Computer Sys-
second edition, Prentice-Hall 2006 tems (TOCS) 1983 vol. 1 (2)

[Silberschatz2001]
Silberschatz, Abraham, Gal-
vin, Peter & Gagne, Greg
Operating System Concepts
John Wiley & Sons, Inc., 2001

Safety & Liveness

Revisiting

Correctness concepts in concurrent systems

Safety properties:
(P(I) A Processes (1,S)) = 0Q(1,S)

where []Q means that Q does always hold

Examples:

* Mutual exclusion (no resource collisions) e has been addressed
* Absence of deadlocks v to be addressed now
(and other forms of ‘silent death’ and ‘freeze’ conditions)
* Specified responsiveness or free capabilities s Real-time systems
(typical in real-time / embedded systems or server applications)

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

= A system may become deadlocked, if all these conditions apply!

Safety & Liveness

Repetition

Correctness concepts in concurrent systems

Extended concepts of correctness in concurrent systems:
. Termination is often not intended or even considered a failure

Safety properties:
(P(1) AProcesses (1,5)) = 0Q(1,S)
where 0 Q means that Q does always hold
Liveness properties:
(P(I) A Processes (1,5)) = <Q(1,S)
where ©Q means that Q does eventually hold (and will then stay true)
and i the current state of the concurrent system

Safety & Liveness

Deadlocks
Most forms of synchronization may lead to

Deadlocks

(Avoidance / prevention of deadlocks is one central safety property)

= How to predict them?
= How to find them?
= How to resolve them?

w ... or are there structurally dead-lock free forms of synchronization?

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

aprocess applies for a resource, while it is holding another resource (sequential requests).

Safety & Liveness

Deadlocks

Deadlock strategies:
 Ignorance & restart
¥ Kill or restart unresponsive processes, power-cycle the computer,

* Deadlock detection & recovery
1 find deadlocked processes and recover the system in a coordinated way

* Deadlock avoidance
&5 the resulting system state is checked before any resources are actually assigned

¢ Deadlock prevention
1 the system prevents deadlocks by its structure

Safety & Liveness

Repetition
Correctness concepts in concurrent systems
Liveness properties:

(P() A Processes (1,5)) = <Q(1,S)

where <>Q means that Q does eventually hold (and will then stay true)

Examples:

* Requests need to complete eventually.
* The state of the system needs to be displayed eventually.
* No part of the system is to be delayed forever (fairness).

o Interesting liveness properties can become very hard to proof

Safety & Liveness

Towards synchronization
Reserving resources in reverse order
var reserve_l, reserve_2 : semaphore
process P1; process P2;

statement X; statement A;

-~ employ all resources -~ employ all resources

statement Z; statement C;
end P1; end P2;

Sequence of operations: A ~ B ~ C; X ~ Y ~ Z; [X.Z | A,B,C} [A.C | X,v.Z| ~[B | Y]
or:[A | X]followed by a deadlock situation

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and w:
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion

Hold and wait
No pre-emption
Circular wait
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Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

2. Break Hold and wait: Circular wait

Safety & Liveness

Deadlocks

Resource Allocation Graphs holds
(Silberschatz, Galvin & Gagne)

RAG = {V,E}; Resource allocation graphs consist of vertices V and edges E.
V = P UR; Vertices V can be processes P or Resource types R.

with processes P = {Py,....P,}

and resources types R = {Ry....Ry}

E. UE, UE,; Edges E can be “claims” E,, “requests” £, or “assignments”

with claims E = {

requestsE = { ..

andassignments £, = { — ..} claims
Note: any resource type  can have more than one instance of a resource.

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1= No circular dependency s no deadlock:

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process - while actual requests are blocking,

requests

Safety & Liveness

Safety & Liveness

Deadlocks
Deadlock prevention

(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).
2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: :

Deadlocks
Deadlock prevention
Mutual exclusion . Break Mutual exclusion:

Hold and wait By replicating critical resources, mutual exclusion becomes un-
No pre-emption necessary (only applicable in very specific cases).

_ Circular wait | . Break Hold and w:

Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

. Introduce Pre-emption:

Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered

. Break Circular waits:

Safety & Liveness

(Remove one of the four necessary deadlock conditions)

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1 Two process, reverse allocation deadlock:

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Two circular dependencies i deadlock:
1T 27 37
aswellas: 5> 5

Derived rule:
If some processes are deadlocked then there
are cycles in the resource allocation graph.

Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

w Assignment of resources such that
circular dependencies are avoided:

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule:

If some processes are deadlocked
then there are cycles in the resource allocation graph.

w Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

= Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.

Safety & Liveness

Deadlocks
Deadlock prevention
(Remove one of the four necessary deadlock conditions)
1. Break Mutual exclusion:

By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

Mutual exclusion
Hold and wait
No pre-emption
. Break Hold and wait: Circular wait

Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

. Break Circular waits:
E.g. order all resources globally and restrict processes to request resources in that order only.

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Safety & Liveness

Deadlocks
Edge Chasing

(for the distributed version see Chandy, Misra & Haas)

blocking processes:
& Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

nodes on probe reception:

w Propagate the probe to all processes holding the critical
resources or to all requested yet unassigned resources —
while updating the second and third entry in the probe.

a process receiving its own probe:
(blocked-id = targeted-id)

w Circular dependency detected.

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked

ww Actual deadlock identified
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Safety & Liveness

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked

i Potential deadlock identified

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] & False;
2.While Ji: —Completed [i]
and Vj: Requested [i, j] < Simulated_Free [j] do:
Vj: Simulated_Free [j]< Simulated_Free [j]+ Allocated [i, jl;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is currently
else all processes i with —Completed [i] are involved in a deadlock!.

Safety & Liveness

Deadlocks
Deadlock recovery

A deadlock has been detected = now what?

Breaking the circular dependencies can be done by

w Either pre-empt an assigned resource which is part of the deadlock.
w or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Important implications:
1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its
surroundings (must keep or re-instantiate the full initial state).

3. If any part of an atomic operation fails,
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts)
must be prepared to declare failure
until the final global commitment.

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked

w Potential deadlock identified
—yet clearly not an actual deadlock here

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks
in the general case?

(multiple instances per resource)

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] < False;

2.While Ji: —Completed [i]
and Vj: Claimed [i, j] < Simulated_Free [j] do:
Vj: Simulated_Free [j] < Simulated_Free [j] +Allocated [i, jJ;
Completed [i] < True;
3.1f Vi: Completed [i] then the system is

A system is a system in which future deadlocks can be
avoided assuming the current set of available resources.

Safety & Liveness

Deadlocks
Deadlock strategies:

Deadlock prevention
System prevents deadlocks by its structure or by full verification

Deadlock avoidance
System state is checked with every resource assignment.

Deadlock detection & recovery
Detect deadlocks and break them in a‘coordinated’ way.

Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer,

Safety & Liveness

Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations:
An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

« once,

« multiple times,

 infinitely often.

Observations:

« Idempotent operations are often atomic, but do not need to be.
« Atomic operations do not need to be idempotent.

. perations can ease the req for syndl

Deadlocks
Banker’s Algorithm

Check potential future system safety by simulating a granted request:
(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then
Free = Free - Request;
Claimed := Claimed - Request;
Allocated := Allocated + Request;

if (checked by e.g. Banker’s algorithm) then
w Grant request

= Restore former system state: (Free, Claimed, Allocated)
end if;
end if;

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Definitions of atomicity:

An operation is atomic if the processes performingit ..
« (by ‘awareness) ... are not aware of the existence of any other active

process, and no other active process is aware of the activity of the

processes during the time the processes are performing the atomic operation.

« (by communication) ... do not communicate with other
processes while the atomic operation is performed
« (by means of states) ... cannot detect any outside state change and do not
reveal their own state changes until the atomic operation is complete.
Short:
An atomic operation can be considered to be
indivisible and instantaneous.

Safety & Liveness

Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability ::= measure of success
with which a system conforms to its specification.
low failure rate.

Failure ::=a deviation of a system from its specification.
Error = the system state which leads to a failure.

Fault ::=the reason for an error.

Safety & Liveness

Deadlocks
Banker’s Algorithm

There are processes P; € {P;,...,P,} and resource types R € {Ry,...,R;, } and data structures:

* Allocated [i, j]
& the number of resources of type j currently allocated to process i
Free [j]
& the number of currently available resources of type j.
Clained (i, j]
& the number of resources of type j required by process i eventually.
Requested [i,
o the number of currently requested resources of type j by process i.
Completed [i]
& boolean vector indicating processes which may complete.
Simulated_Free [j]

Number of available resources assuming that complete processes deallocate their resources.

Safety & Liveness

Deadlocks
Distributed deadlock detection

Observation: Deadlock detection methods like Banker's Algorithm are too communication
intensive to be commonly applied in full and at high frequency in a distributed system.

& Therefore a distributed version needs to:

e Split the system into nodes of reasonable locality
(keeping most processes close to the resources they require).

& Organize the nodes in an adequate topology (e.g. a tree)

we Check for deadlock inside nodes
with blocked resource requests and detect/avoid local deadlock immediately.

v Exchange resource status information
between nodes occasionally and detect global deadlocks eventually.

Safety & Liveness

Atomic & idempotent operations

Atomic operations
Atomic (lpeﬂlltﬂs J

Indivisible |

Safety & Liveness

Reliability, failure & tolerance

Faults during different phases of design

* Inconsistent or inadequate specifications
& frequent source for disastrous faults

* Software design errors
& frequent source for disastrous faults

* Component & communication system failures
& rare and mostly predictable
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Reliability, failure & tolerance

Faults in the logic domain

¢ Non-termination / -completion

n'in a deadlock state, blocked fo in an infin p
handle the failure

* Range violations and other inconsistent states
& Run-time environment level exception handling required to handle the failure

e Value violations and other wrong results
s User-level exception handling required to handle the failure

512
_‘Ixfl Safety & Liveness
Reliability, failure & tolerance
Fault tolerance

e Full fault tolerance

the system continues to operate in th
without an; unctional
— even though this might reduce the achievable total operation time.

¢ Graceful degradation (fail soft)
the system continues to operate in t nce of ‘fon rror condition:

while accepting a pas or performance.

* Fail safe
the system halts and maintains its integrity.

= Full fault tolerance is not maintainable for an infinite operation time!

eful degradation might have multiple levels of reduced functionality.

Safety & Liveness
Reliability, failure & tolerance
Faults in the time domain

* Transient faults

* Intermittent faults

& Faults of a certain regularity ..

* Permanent faults

Safety & Liveness
Reliability, failure & tolerance

Observable failure modes

Failure modes

very hard to handle

i

N

require careful analysis Time domain

et

] [ Value domain

& Faults which stay ... the easiest to find
(omssion)

Safety & Liveness
Summary
Safety & Liveness

o Liveness
« Faimess

* Safety

 Deadlock avoidance
* Deadl:

* Atomic & Idempotent operations
« Definitions & implications

* Failure modes
initic

Safety & Liveness

Reliability, failure & tolerance

Fault prevention, avoidance, removal, ...

and/

Fault toleranc
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Distributed Systems

Uwe R. Zimmer - The Australian National University

Distributed Systems

Network protocols & standards

1: Physical Layer
 Service: Transmission of a raw bit stream
over a communication channel
* Functions: Conversion of bits into electrical or optical signals
* Examples: X.21, Ethernet (cable, detectors & amplifiers)

Distributed Systems

Network protocols & standards

0SI Network L

5: Session Layer

 Service: Coordination of the dialogue between application programs
® Functions: Session establishment, management, termination
* Examples: RPC

Distributed Systems

Network protocols & standards

Serial Peripheral Interface (SPI)

Full Duplex, 4-wire, flexible clock rate

|
=3 Distributed Systems

References for this chapter

[Bacon1998] [Schneider1990]
Bacon, | Schneider, Fred
Concurrent Systems Implementing fault-tolerant services using
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vol. 22 (4) pp. 299-319

[Ben2006]
Ben-Ari, M [Tanenbaum2001]
Principles of Concurrent and Dis- Tanenbaum, Andrew
tributed Programming Distributed Systems: Prin-
second edition, Prentice-Hall 2006 ciples and Paradigms

Prentice Hall 2001

[Tanenbaum2003]
Tanenbaum, Andrew
Computer Networks
Prentice Hall, 2003

Distributed Systems

Network protocols & standards

2: Data Link Layer

e Service: Reliable transfer of frames over a link
* Functions: Synchronization, error correction, flow control
* Examples: HDLC (high level data link control protocol),
LAP-B (link access procedure, balanced),
LAP-D (link access procedure, D-channel),
LLC (link level control), ...

Distributed Systems

Network protocols & standards

6: Presentation Layer

 Service: Provision of platform independent coding and encryption
* Functions: Code conversion, encryption, virtual devices
* Examples: 1SO code conversion, PGP encryption

=3 Distributed Systems

Network protocols & standards

Serial Peripheral Interface (SPI)

Clock phase and |
polarity need to
be agreed upon |

Distributed Systems

Network protocols & standards
OSI network reference model
Standardized as the

Open Systems Interconnection (OSI) reference model by the
International Standardization Organization (ISO) in 1977

* 7 layer architecture
* Connection oriented

Hardy implemented anywhere in full ...
...but its concepts and terminology are widely used,

when describing existing and designing new protocols ...

Distributed Systems

Network protocols & standards

051 Network Layers

3: Network Layer

e Service: Transfer of packets inside the network
* Functions: Routing, addressing, switching, congestion control
* Examples: IP, X.25

Distributed Systems

Network protocols & standards

051 Network Layers

7: Application Layer

 Service: Network access for application programs
* Functions: Application/OS specific
 Examples: APIs for mail, ftp, ssh, scp, discovery protocols ...

=3 Distributed Systems

Network protocols & standards (SPI)

Serial Peripheral Interface (SPI)

Data connected to
an internal bus?

oM [ Specat |

Distributed Systems

Network protocols & standards

OSI Network Layers

Distributed Systems

Network protocols & standards

05 Net

4: Transport Layer

e Service: Transfer of data between hosts

 Functions: Connection establishment, management,
termination, flow-control, multiplexing, error detection

* Examples: TCP, UDP, ISO TP0-TP4

Distributed Systems

Network protocols & standards
Serial Peripheral Interface (SPI)

w Used by gazillions of devices ... and
it's not even a formal standard! =
w Speed only limited by what By B
both sides can survive. - =2,
e Usually push-pull drivers,
i.e. fast and reliable, yet not friendly to wrong
wiring/programming. [ o

L] Distributed Systems

Full duplex with 1

outof xslaves |
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Distributed Systems . Distributed Systems

Network protocols & standards (SPI) ] Network protocols & standards Network protocols & standards
_ 0a ol | .
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Network protocols & standards Network protocols & standards Network protocols & standards Network protocols & standards
Ethernet / IEEE 802.3 Ethernet / IEEE 802.3 Ethernet / IEEE 802.3
osl AppleTalk over IP S relation: PHY, MAC, MAC-client 551 relation: PHY, MAC,
e area network (LAN) developed by Xerox in the 70's
e RRESR Fing Frotc el 10Mbps specification 1.0 by DEC, Intel, & Xerox in 1980.
First standard as IEEE 802.3 in 1983 (10Mbps over thick co-ax cables).
Session AT Data Stream Protocol | AT Session Protocol | Zone Info Protocol | Printer Access Protacol currently 1Gbps (802.3ab) copper cable ports used in most desktops and laptops.
- Routing Table AT Update ased Routing | Name Binding | AT Transaction | AT Echo currentl s up to 100Gbps (IEEE 2010).
" Maintenance Prot. Protocol Protocol Protocol Protocol o
more than 85% of current LAN lines worldwide =
Datagram Devery Potocol DDF) -
Network e (according to the International Data Corporation (IDC)) : e S
el 1 EtherTalk Lk || LocarTalk Link | TokenTalk ink |~ FDDITalk Link —
. Jccess Protocolicess ProtocO RRCces: ProtocOlJ e Protocd) w Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
rysicl et 3023 LocaTlk - oot
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Network protocols & standards Network protocols & standards Network protocols & standards Network protocols & standards

Ethernet / IEEE 802.71 Bluetooth Token Ring / IEEE 802.5 / Fibre Channel
Fibre Distributed Data Interface (FDDI)

Distributed Systems

Developed in the late 80's.
ANSI standard since 1994.

rrent standards allow for 16 Gbps per link.

Wireless local area network (WLAN) developed in the 90's Wireless local area network (WLAN) developed in the 90's with different features than 802.11

) oken Ring * developed by IBM in the 70’
First standard as IEEE 802.11 in 1997 (1-2Mbps over 24GHz). « Lower power consumption. o IEEE 802.5 standard is modelled after the IBM Token Ring architecture

Typical usage at 54 Mbps over 2.4GHz carrier at 20 MHz bandwidth. « Shorter ranges. (specifications are slightly different, but basically compatible)

Allows for three different topolo
Current standards up to 780 Mbps (802 o .  at 160 MHz bandwidth. « Lower data rates (typically < 1Mbps). 1BM Token Ring requests are star topology as well as twisted pair cables, pot

Future standards are designed for up to 100Gbps GHz carrier « Ad-hoc networking (no infrastructure required) while IEEE 8025 is unspecified in topology and medium & Point-to-point: 2 addresses
Direct relation to IEEE 802.3 and similar OS! layer association. Fibre Distributed Data Interface combines a token ring architecture

-ated loop (similar to token ring): deterministic, real-time capable
with a dual-ring, fibre-optical, physical netw

= Combinations of 802.11 and Bluetooth OSl layers X e .
wz Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) are possible to achieve the required features set. " Unlike CSMA/CD, Token ring is determin
(with respect to its timing behaviour) Defines OSI equivalent layers up to the session level

e Switched fabric: 2** addresses, many topologies and concurrent data links possible

1 Direct-Sequence Spread Spectrum (DSSS)

DDl is deterministic and failure resistant Mostly used in storage arrays,

but applicable to super-computers and high integrity systems as well.
None of the above is currently used in performance oriented applications.

L] Distributed Systems : Distributed Systems L] Distributed Systems : Distributed Systems

Network protocols & standards = Network protocols & standards Distributed Systems Distributed Systems

Fibre Channel - InfiniBand Distribution! What can be distributed?

Mapping of Fibre Channel to OS! layers:

Motivation
OSl FibreChannel ~ FC/IP TCP/IP giciopedinihellat State Common operations on distributed data
N ) Defined by the InfiniBand Trade Association (IBTA) since 1999. ossibly ...

Applcaton Application Current standards allow for 25 Gbps per link. Function wr Distributed operations on central data
1 sopicaion |- 3 . ’ fits an existing physical distribution (e-mail system, devices in a large craft,

resentation . . resentation Switched fabric topologi . . ~
" 3 ) witched fabric topologies high performance due to potentially high degree of parallel 3 State & Function wr Client/server clusters

e Gt ; " " reliability/integrity due to redundancy of hardware and software.

& F— H Defines only tl lat: layer ts of the network laye f = i i ;
- - efines only the data-link layer and parts of the network layer. scalable. none of those & Pure replication, redundancy
: Existing devices use copper cables (instead of optical fibres

Network " Rerword tegration of heterogeneous devices.

Concurrent data link: mmonly up to 12 e 300Gt

| — - —_— + Mostly used in super-computers and clusters but applicable to storage arrays as well. Different specifications will lead to substantially different distributed designs.

= Cheaper than Ethernet or FibreChannel at high data-rates,

Physical Physical e Physical

nall packets (only up to 4kB) and n on control.
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Distributed Systems
Common design criteria

= Achieve De-coupling / high degree of local autonomy
w Cooperation rather than central control

w Consider Reliability

& Consider Scalability

wr Consider Performance

== Distributed Systems

Distributed Systems
Synchronize a ‘real-time’ clock wi-diectiona)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift § defined as:

(1+8)'= = =(1+8)

Clty) —C(ty)
6t

‘real-time’ clock is adjusted
forwards & backwards

s Calendar time

Distributed Systems

Distributed Systems
Virtual (logical) time [Lamport 1978]

a—b=Cla)<Cb)

witha — b being a causal relation between a and b,
and C(a), C(b)are the (virtual) times associated with a and b

a — biff:
« ahappens earlier than b in the same sequential control-flow or
* a denotes the sending event of message m,
while b denotes the receiving event of the same message m or
« there is a transitive causal relation between aand b: a = e; = ... = e, > b

Notion of concurrency:

allb= —(a~b)A (b~ a)

Distributed Systems

Distributed Systems
Virtual (logical) time

a~-b=Ca)<Cb)
Implications:
C@<C) = —(b~a)=(~b)V(alb)

C(a) =C(b)=allb= —(a~b)A—(b~a)

C(a) = C(b) <Cld) = —(c~a)
C(a) <C(b) <C() = —(c~ a)

|
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Distributed Systems

Some common phenomena in distributed systems

1. Unpredictable delays (communication)

i Are we done yet?

2. Missing or imprecise time-base

w Causal relation or temporal relation?

3. Partial failures
w Likelihood of individual failures increases
& Likelihood of complete failure decreases (in case of a good design)

— |
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Distributed Systems
Synchronize a ‘real-time’ clock dorward oniy

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift § defined as:

Clo) —ce) _ |
tt

(1+6)7" <

‘real-time’ clock is adjusted
forwards only

= Monotonic time

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Ca)<Cb)
Implications:
Cl@<ch) =2

C(a) = C(b)=?

C(a) = C(b) < Clc) = ?
C@<cb)<cl=2?

Distributed Systems

Distributed Systems
Virtual (logical) time

a—b=Cl)<Cb)
Implications:
Cla)<C(b)= —(b~a) =(a~b)V(alb)

Cl@) =C()=allb=—(a~b)A—(b~a)

Cl@=Cch)<Cl@=—(cra)=@-cVlo
Cl@<cb)<Cl@=—-(c>a)=(@@-0cV@lc)
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Distributed Systems
Time in distributed systems

Two alternative strategies:

Based on a shared time w= Synchronize clocks!

Based on sequence of events w= Create a virtual time!

Distributed Systems

2.
. While Top (RequestQueue) # OwnRequest: delay until new message

3,
4

Distributed Systems
Distributed critical regions with synchronized clocks

V times:
' received Requests: Add to local RequestQueue (ordered by time)
V received Release messages:

Delete corresponding Requests in local RequestQueue

.Create OwnRequest and attach current time-stamp.

Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

Delay by 2L (1 being the time it takes for a message to reach all network nodes)

. Enter and leave critical region

5.Send Release-message to all processes.

Distributed Systems

Distributed Systems
Virtual (logical) time

a— b= C(a) <C(b)

Implications:

Cla) < C(b)= — (b~ a)
C(a)=C()=alb

Cla) =C(b)<Cl)=7?
Cl@<ch)<clo=?

Distributed Systems

Distributed Systems
Virtual (logical) time

Time as derived from causal relations:

RN 5 26 [l 27 25 ™ 30 31 [l 32 33 34 Bl 35 [ 36 M 37 b 38 139 | 0]

I

= Events in concurrent control flows are not ordered.

= No global order of time.

Distributed Systems
‘Real-time’ clocks

are:

« discrete - i.e. time is not dense and there is a minimal granularity
« drift affected:

Maximal clock drift § defined as:

Clty) —Clty) _ .
L=t =(1+8)

(1+8)" =

often specified as PPM (Parts-Per-Million)

(typical ~20 PPM in computer applications)

Distributed Systems

Distributed Systems
Distributed critical regions with synchronized clocks

Analysis
¢ No deadlock, no individual starvation, no livelock.
¢ Minimal request delay: 2L.
* Minimal release delay: L.

¢ Communications requirements per request: 2(N — 1) messages
(can be significantly improved by employing broadcast mechanisms)

* Clock drifts affect fairness, but not integrity of the critical region.

Assumptions:
« Lisknownand constant s violation leads to loss of mutual exclusion.
 No messages are lost e violation leads to loss of mutual exclusion

Distributed Systems

Distributed Systems
Virtual (logical) time

a— b= Cla) <C(b)
Implications:
C(@<C(b)=> —(b~>a)=(a~b)V(lb)

C(a) =C(b)=allb=—(a~b)A—(b~a)

Cl@=C)<Cl=?
C(a) <Cb) <Cl)=?

Distributed Systems

Distributed Systems
Implementing a virtual (logical) time

1YP:Ci=0
2P

Vlocal events: C; = C; +1;

V send events: C; = C; +1; Send (message, C));

V receive events: Receive (message, C,)); C; = max(C;,C,,)) +1;
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Distributed Systems
Distributed critical regions with logical clocks

 Vtimes: V received Requests:
Add to local RequestQueue (ordered by time)
Reply with Acknowledge or OwnRequest
¢ Vtimes: V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.
2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4.Send Release-message to all processes.

== Distributed Systems

Distributed Systems
Electing a central coordinator (the Bully algorithm)

Any process P which notices that the central coordinator s gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.
2. P waits for response messages.
e 1f no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.
v If any process responds,
then the election activity for P is over and P waits for a Coordinator-message
All processes P; perform at all times:
« If P; receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

Distributed Systems

Distributed Systems
Distributed states

A consistent global state (snapshot) is define by a unique division into:

* “The Past” P (events before the snapshot):

(e EP)Ale; > e) =>e EP
* “The Future” F (events after the snapshot):

(e ERAN(e;~e)=>e, EF

Distributed Systems

Distributed Systems
Distributed states

& Running the snapshot algorithm:

+ Observer-process Py (any process) creates a snapshot token t, and saves its local state s,
+ Pysends t, to all other processes.

1
| -
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Distributed Systems
Distributed critical regions with logical clocks

Analysis

* No deadlock, no individual starvation, no livelock.

¢ Minimal request delay: N — 1 requests (1 broadcast) + N — 1 replies.

¢ Minimal release delay: N — 1 release messages (or 1 broadcast).

« Communications requirements per request: 3(N — 1) messages
(or N —1 messages + 2 broadcasts).

 Clocks are kept recent by the exchanged messages themselves.

Assumptions:

* No messages are lost & violation leads to stall.

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

Instead: some entity probes and collects local states.
s What state of the global system has been accumulated?
w Sorting the events into past and future events.

=3 Distributed Systems

Distributed Systems
Distributed states

1 Running the snapshot algorithm:

¥/ P; which receive t, (as an individual token-message, or as part of another message):
« Save local state s; and send s; to Py

« Attach , to all further messages, which are to be sent to other processes.
« Save t, and ignore all further incoming t,'s

Distributed Systems

Distributed Systems
Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology
2.Send one token message to one process

3.V times, Vprocesses: On receiving the token message:
1. If required the process
enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
« Token is not lost s violation leads to stall
(a lost token can be recovered by a number of means - e.g. the ‘election’ scheme following)

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

- 27 | 2 25 il
SEE- EE B
= ETEN B
T 7 [ > ¥ % v o
Instead: some entity probes and collects local states.
& What state of the global system has been accumulated?

I
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Distributed Systems
Distributed states

= How to read the current state of a distributed system?

I 3 e A S M 5
Instead: some entity probes and collects local states.
& What state of the global system has been accumulated?
w Event in the past receives a message from the future!
Division not possible & Snapshot inconsistent!

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

« /P, which previously received t, and receive a message m without t,:

« Forward m to Py (this message belongs to the snapshot).

Distributed Systems

Distributed Systems
Distributed critical regions with a central coordinator

A global, static, central coordinator
= Invalidates the idea of a distributed system
w Enables a very simple mutual exclusion scheme
Therefore:
* A global, central coordinator is employed in some systems ... yet ...

e ... if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

Distributed Systems
Distributed states

1= How to read the current state of a distributed system?

. e e e
R =_ETHI
T T 5 ¥
Instead: some entity probes and collects local states.
& What state of the global system has been accumulated?

= Connecting all the states to a global state.

Distributed Systems

Distributed Systems
Snapshot algorithm

Observer-process Py (any process) creates a snapshot token t, and saves its local state s,
Py sends £, to all other processes.

P, which receive t, (as an individual token-message, or as part of another message)

« Save local state s; and send s; to Py,

« Attach , to all further messages, which are to be sent to other processes.

« Savet, and ignore all further incoming t's.

¥/ P; which previously received t, and receive a message m without t,:

« Forward m to Py (this message belongs to the snapshot).

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

« /P, which receive t, (as an individual token-message, or as part of another message)
« Savelocal state s; and send s; to Py

« Attach £, to all further messages, which are to be sent to other processes.
« Save t, and ignore all further incoming t,'s.
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Distributed Systems
Distributed states

& Running the snapshot algorithm:

« Save t, and ignore all further incoming t's.

Distributed Systems

Distributed Systems
Consistent distributed states
Why would we need that?
* Find deadlocks.
 Find termination / completion conditions.
* ... any other global safety of liveness property.
* Collect a consistent system state for system backup/restore.

* Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Distributed Systems

accept (Print_Job : in Job_Type; Server_Id : in Task_Id) do
if Print_Job in AppliedForJobs ther
if Server_Id = Current_Task then
(Print_Job);
elsif Server_Id > Current_Task then
(Print_Job);
(Print_Job; Server_Td);
else
null; -- removing the contention message from ring
end if;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
(Print_Job; Server_Td);
end if;
end Contention;
terminate;
end selec
end loop;
end Print_Server;

Distributed Systems

Distributed Systems
Distributed states

& Running the snapshot algorithm:

« Finalize snapshot

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Job_Completed (

Distributed Systems

Distributed Systems
Transactions

w Concurrency and distribution in systems
with multiple, interdependent interactions?

w Concurrent and distributed
client/server interactions
beyond single remote procedure calls?

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

wr Sorting the events into past and future events.

= Past and future events uniquely separated s Consistent state

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Distributed Systems

Distributed Systems
A distributed server (load balancing)

with Ada.Task_Identification; use Ada.Task_Identification;

task type Print_Server is
entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
entry Contention  (Print_Job : in Job_Type; Server_Id : in Task_Id);
end Print_Server;

Distributed Systems

Distributed Systems
Transactions

Definition (ACID properties)

+ Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked
Consistency: Transforms the system from one consistent state to another consistent state.
Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. I the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.
Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

Distributed Systems

Distributed Systems
Snapshot algorithm

Termination condition?

Either

* Make assumptions about the communication delays in the system.

« Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Send_To_Group (Job)

Distributed Systems

Distributed Systems
A distributed server (load balancing)

task body Print_Server is

accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do
if not Print_Job in Turned_Down_Jobs then
if Not_Too_Busy then
Applied_For_Jobs := Applied_For_Jobs + Print_Job;
Print_Job
requeue ;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
end if;
end if;
end Send_To_server;

Distributed Systems

Definition (ACID properties):

Distributed Systems
Transactions

Atomic operations ey
spanning multiple processes? | How to ensure consistency |
— PP J ina distributed system? |
Atomicity: All or none of the sub-operations are performed. —
Atomicity helps achieve crash resilience. If a crash occurs, then itis possible

to roll back the system to the state before the transaction was invoke

Consistency: Transforms the system from one consistent state to another consistent state.

Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object
invocation does not interfere with other operations on the same object. | g 1o cqpies?
Durability: After a commit, results are guaranteed to persist, —
even after a subsequent system failure.
\ Actual isolation and
What hardware doe | efficient concurrency?|  Actual isolation or the
eed toassume?___| appearance of solation? |
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Transactions

A closer look inside transactions:

Transactions consist of a sequence of operations.

If two operations out of two transactions can be performed in any order with the
same final effect, they are commutative and not critical for our purposes.

Idempotent and side-efiect free operations are by definition commutative.
All non-commutative operations are considered critical operations

Two critical operations as part of two different transactions while
affecting the same object are called a conflicting pair of operations,

Distributed Systems

Distributed Systems
Serializability

w Serializable

Distributed Systems

Distributed Systems
Serializability

|

Three conflicting pairs of operations with the same order of execution
(pair-wise between processes)

The order between processes also leads to a global order of processes.

w Serializable

Distributed Systems

Distributed Systems
Transactions

Acloser look at multiple transactions:
« Any sequential execution of multiple transactions
will fulfil the ACID-properties, by definition of a single transaction.

A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfil the ACID-properties.

If a specific concurrent execution can be shown to be equivalent to a specific sequential
execution of the involved transactions then this specific interleaving is called ‘serializable’.

If a concurrent execution (interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation

Distributed Systems

Distributed Systems
Serializability

v, - )

« Two conflicting pairs of operations with different orders of executions

= Not serializable.

Distributed Systems
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Distributed Systems
Serializability

« Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

w Serialization graph is cyclic.
w Not serializable

Distributed Systems
Serializability

« Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

« The order between processes does no longer lead to a global order of processes.
ww Not serializable

Distributed Systems

Distributed Systems
Transaction schedulers

Three major designs:

¢ Locking methods:

Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:

Note relative starting times and keep order dependencies consistent.
* “Optimistic” methods:

Go ahead until a conflict is observed — then roll back.

Distributed Systems

Distributed Systems

Achieving serializability

w For the serializability of two transactions it is necessary and sufficient

for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

Distributed Systems

Distributed Systems
Serializability

Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

The order between processes also leads to a global order of processes.

Distributed Systems

Distributed Systems
Achieving serializability

e For the serializability of two transactions it is necessary and sufficient

for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.
« Define: Serialization graph: A directed graph;
Vertices i represent transactions T;;

Edges T, T, represent an established global order dependency
between all conflicting pairs of operations of those two transactions.

w For the serializability of multiple transactions it is
necessary and sufficient
that the serialization graph is acyclic.

=3 Distributed Systems
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Transaction schedulers — Locking methods

Locking methods include the possibility of deadlocks v careful from here on out ...

+ Complete resource allocation before the start and release at the end of every transaction:
w This will impose a strict sequential execution of all critical transactions.
(strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation
« Growing phase: locks can be acquired, but not released
« Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).
w Possible deadlocks
& Serializable interleavings
w Strict isolation (in case of strict two-phase locking)
Semantic locking: Allow for separate read-only and write-locks

w Higher level of concurrency (see also: use of functions in protected objects)
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Distributed Systems
Serializability

Two conflicting pairs of operations with the same order of execution
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Distributed Systems
Serializability

Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).
« The order between processes also leads to a global order of processes.

w Serializable

Distributed Systems

Distributed Systems
Serializability

« Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

= Serialization graph is acyclic.

= Serializable

Distributed Systems

Distributed Systems
Transaction schedulers — Time stamp ordering

Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

 Case 1: A transaction with a time-stamp /ater than all currently active transactions applies:
w the request is accepted and the transaction can go ahead.
* Alternative case 1 (strict time-stamp ordering):
v the request is delayed until the currently active earlier transaction has committed.
« Case 2: Atransaction with a time-stamp earlier than all currently active transactions applies:
= the request is not accepted and the applying transaction is to be aborted.
& Collision detection rather than collision avoidance
& No isolation e Cascading aborts possible.
& Simple implementation, high degree of concurrency
—also in a distributed environment, as long as a global event order (time) can be supplied.




Distributed Systems
Distributed Systems

Transaction schedulers - Optimistic control

1. Read & execute:
dow copy of e n
perform all required operations on the shadow
2. Validate:

d

copy and locally (i.e. in isolation).

After local commit, check all occurred interleavings for serializability.
3. Update or abort;

3a. If serializability could be ensured in step 2 then all results of involved transactions

Ived objects - in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

Distributed Systems
Distributed Systems
Two phase commit protocol

Start up (initialization) phase

Distributed
Transaction

Distributed Systems
Distributed Systems

Two phase commit protocol

Start up (initialization) phase

copy
Setup & Start
operations

Distributed Systems
Distributed Systems

Two phase commit protocol

Phase 2: Implement results
Everybody destroys
shadows
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Distributed Systems

Transaction schedulers - Optimistic control

How to create a consistent copy? |
1. Read & execute: s S——
Create a shadow copy of all inv ts and
perform all required operations on the shadow copy and locally (i.e. in isolation).
Validate:

Fullisolationand |

maximal concurrency! |

After local commit, check all occurred interleavings for serializability.
Update or abort: How to up
3a. If serializability could be ensured in step 2 then all reSUITS GT VoIV Trans:
to all involved objects - in dependency order of the transaction:
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

Distributed Systems

Distributed Systems
Two phase commit protocol
Start up (initialization) phase

Determine
coordinator

Two phase commit protocol

Phase 1: Determine result state

Coordinator requests
and assembles votes:

“"Commit" or "Abort" @

Distributed Systems
Distributed Systems
Two phase commit protocol

Phase 2: Implement results

Everybody reports
"Committed"

all objects consistently?
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Distributed transaction schedulers
Three major designs:
¢ Locking methods:
Impose strict mutual exclusion on all critical sections.
¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.
* “Optimistic” methods:

Go ahead until a conflict is obse —then roll back.

w How to implement “ "and” " operations

in a distributed environment?

Distributed Systems

Distributed Systems
Two phase commit protocol
Start up (initialization) phase

Determine
coordinator

Distributed Systems
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Two phase commit protocol

Phase 2: Implement results

Coordinator instructs 4

everybody to "Commit” @

Distributed Systems
Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back

Distributed Systems
Distributed Systems
Two phase commit protocol
Start up (initialization) phase

Data

Ring of servers
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Two phase commit protocol
Start up (initialization) phase

P,

Setup & Start
operations

Distributed Systems
Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Distributed Systems
Distributed Systems
Two phase commit protocol
or Phase 2: Global roll back

Everybody destroys
shadows
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Two phase commit protocol

Phase 2: Report result of distributed transaction

Coordinator reports toclient: @ i a

"Committed" or"Aborted"

Distributed Systems
Distributed Systems
Redundancy (replicated servers)

Start-up (initialization) phase

Ring of identical
servers

Distributed Systems
Distributed Systems

Redundancy (replicated servers)

Coordinator sends
job both ways

Distributed Systems
Distributed Systems
Redundancy (replicated servers)
°y i Ses

e C

Coordinator also
received two messages
and processes job

= Distributed Systems Distributed Systems : Distributed Systems

Distributed Systems Distributed Systems Distributed Systems

Distributed transaction schedulers Redundancy (replicated servers) Redundancy (replicated servers)

Evaluating the three major design methods in a distributed environment: Premis:

. A crashing server computer should mpromise the functi of the system Stages of each server:
¢ Locking methods: i== No aborts. (full fault tolerance)

Large overheads; Deadlock detection/prevention required. Assumptions & Means:

* Time-stamp ordering: == Potential aborts along the way. * kcompu erver cluster might crash without | Job message received by allactive servers
Recommends itself for distributed applications,

are taken locally and communication overhead is relatively s 5 B

e Replication: at least k + 1 servers. -

Received erable
The server cluster can reorga
oup ma Job processed locally

& Hot stand-by compor
ob message received locally

* “Optimistic” methods: =~ Aborts or commits at the very end.
Maximizes concurrency, but also data replication.  The server is described fully by the current state and the sequence of me: Processed
= State machines: we have to implement consistent state adjustments (re-org

ct“da ge body of literature on this topi and consistent message passing (order needs o be i

. ta
(see: distributed da / operating systems / shared memory / cache management,
[Schneider1990]
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Distributed Systems Distributed Systems Distributed Systems
Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)
Start-up (initialization) phase Startup (initialization) phase Coordinator receives job message

Send Job

Determine Coordinator
coordinator determined

Distributed Systems Distributed Systems : Distributed Systems

Distributed Systems Distributed Systems Distributed Systems

Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)

») vervbody ( e coordin <<o

Server

Server

All server detect
two job-messages

(but nobody : two job-messages ojob-messag
knows that) @ & processes job everybody
processes job

Everybody received job First server detects

=2 Distributed Systems . Distributed Systems . Distributed Systems

Distributed Systems Distributed Systems Summary

Redundancy (replicated servers)

Redundancy (replicated servers) Distributed Systems

ash, new servers joining, or current servers leaving. * Networks
opolo

) - c network standards
Coordinator delivers S r
his local result

onfiguration mess d clocks, virtual (logical) times
« Distributed critical regions (synchronized, logical, token ring)
1. Wait for local job to complete or time-out.
nsistent state ;. Distributed systems
1 ring, send local state around the ring * Elections
4. Ifastate S with j > edthen s; < S Distribut
5. Elect coordinator Distributed servers (replicates, distributed processing, distributed commits)

6. Enter ‘Coordinator or ‘R Transactions (ACID properties, serializable interleavings, transaction schedulers)
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Architectures

Logic - the basic building blocks
Controllable Switches & Ratios

as transistors, relays, vacuum tubes, valves, etc.

Architectures

Logic - the basic building blocks

We successfully interrupted |

a sequence of operations ...

= Architectures

References

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN

[Stallings2001]
Stallings, William
Operating Sy
Prentice Hall,
[Intel2010]
Intel® 64 and IA-32 Architectures Optimization Reference Manual

http:/iwwwintel.com/products/processorimanuals

Architectures

Logic - the basic building blocks for digital computers

nstructing logic gates - for instance NAND in CMO!

= Architectures

Logic - the basic building blocks

=3 Architectures

Interrupt processing
Interrupt handler

Program

Stack

Architectures

In this chapter

Hardware architectures:

From simple logic to multi-core CPUs
w Concurrency on different levels

Software architectures:
w Languages of Concurrency

perating systems and libraries

Architectures

Logic - the basic building blocks for digital computers

Constructing logi

Architectures

Processor Architectures

A simple CPU

Decoder/Sequencer
“an be a machine in itself which break:
instructions into concurrent micro cod

Arithmetic-Logic-Unit (ALU)

Indicating the states of the
latest calculations.

Code/Data management
Fetching, Caching, Storing

Architectures

Interrupt processing

Interrupt handler

i

Abstraction Layer

Architectures

Form of concurren

Operating system
(HAL, processes, virtual memory)
CPU / instruction level
(assembly instructions)
Device / register level
(arithmetic units, registers,...)
Logic gates
(and; ‘or’, ‘not, flip-flop, etc)
Digital circuitry
(gates, buses, clocks, etc.)
Analog circuitry
(transistors, capacitors,

05 processes/threads, signals, events,
multitasking, SMP, virtual parallel machines,...

Logically sequential: pipelines, out-of-order, etc.
logically concurrent: multicores, interrupts, etc.

Parallel adders, SIMD, multiple execution units,
caches, prefetch, branch prediction, etc.

Inherently massively parallel,
synchronised by clock; or: asynchronous logic

Multiple clocks, peripheral hardware, memory,

Continuous time and inherently concurrent

Architectures

Logic - the basic building blocks

Half adder: Full adder:

Interrupts

One or multiple lines wired
directly into the sequ

= Required for:
Pre-emptive scheduling, Timer driven actions,
Transient hardware interactions,
Usually preceded by an external log

nterrupt controller”) which accum

lates and encodes all external requests.

On interrupt (if unmasked)

Lo of interrupt ha addre:
« Current IP and state pushed onto stack
« IPsetto interrupt handler.

Architectures

Interrupt processing

Interrupt handler
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Interrupt processing
terrupt handler

Architectures

Interrupt processing

Interrupt processing
nterrupt handler

Interrupt processing
Interrupt handler

Interrupt handler
Push registers
Declare local variables Declare local variables
Run handler code Run handler code Run handler code
do some 1/0 i do some 1/0 do some 1/0
+. or run sone tine 3 i - or run some time - or run sone time
critical code critical code
Remove local variables
> Pop registers

Push registers

Push registers
Declare local variables

Push registers
Declare local variables
Run handler code

do some 1/0
- or run sone time
critical code
Renove local variables
> Pop registers

L critical code
i pC > Remove local variables

P Magtsters |

s Honda K rdge (Creathe Commond Al

Architectures : Architectures

Interrupt processing

Interrupt handler

Interrupt processing

Interrupt handler

The CPU
hardware (1)
did that, |
before anything |
was changed

Architectures

Interrupt processing

Interrupt handler

Interrupt handler Interrupt handler
Push registers
f F Declare local variables
! Run handler code
~. do some 1/0 ..
or run some tine
critical code

Push registers
Declare local variables
Run handler code
.. do some 1/0 ..
or run some tine
critical code ..
> Remove local variables

Push registers
Declare local variables
Run handler code

> Pop registers

Architectures . Architectures

Interrupt processing

Interrupt handler

Architectures - Architectures

Interrupt processing

Interrupt handler

Interrupt processing Interrupt processing
Interrupt handler Interrupt handler
Push registers
Declare local variables
Run handler code

.. do some 1/0 .

- or run sone tine

Stack




Architectures

Interrupt processing
terrupt handler

|| Push other registers
pe | Declare local variables

= Architectures

Interrupt processing
nterrupt handler
Program

R terrupt
Push other registers
Declare local variables

> Run handler code

do some 1/0

Architectures

Interrupt processing
Interrupt handler

ar interrupt
priorit
nable interrupt)
Push other registers
Declare local variables
Run handler code

Architectures

Interrupt processing

Interrupt handler

(Adjust prioriti
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code

do some 1/0 do some 1/0 ..
or run some tine or run some tine
critical code critical code
Remove local variables
» Pop other registers | Pop other registers
©|Return ("bx 1r)

Architectures

Interrupt handler

Architectures

Interrupt handler

Architectures Architectures
Interrupt processing

Interrupt handler

Multiple programs

r t fla Things to consider Things to consider If we can execute interrupt handler code
(Adjust \‘J\,:n‘u 5 o “concurrently” to our “main” prograi
—enable interrupt)

Push other registers N or ¢ - : inte '
Gieth sz Interrupt handler code can be interrupted as v

nterrupt handler code can be interrupted as 5
Run handler code Are you allowing to interrupt an interrupt hand| han - Are you allowing to interrupt an interrupt handler
.. do some 1/0 .. ! S S

+. or run sone tine interrupt on the same priority level (e.g. the same interrupt)? interrupt on the same priority level (e.g. the same interrupt)?

1 Can we then also have multiple “main” programs?
Can you overrun a stack with interrupt handlers?

Can you overrun a stack with interrupt handlers?

Can we have one of those?

Architectures Architectures

Context switch Context switch Context switch Context switch
Dispatcher Dispatcher
Process 1 Process 2

PCB P

Architectures Architectures

Dispacher Dispacher
G | Process 2 Process 1 e Process 2

e »|Declare local variables < Declare local varisbles

o pc | Store SP to PCB 1

Code

Code Code Code

=3 Architectures

Context switch Context switch

Dispaicher Dispaicher

Architectures Architectures Architectures

Context switch

Dispatcher Dispatcher
Process 1

Ero e Process 1 e Process 2 Process 1 Process 2

ey Declare local variables e Declare local variables
Store SP to PCB 1 Store SP to PCB 1

PC - Scheduler Scheduler

R Process 2 Pocess 1

Proce N Push registers
f bCB Declare local variables vCh e} Declare local variables
Store SP to PCB 1 Store SP to PCB 1
Scheduler Scheduler
Code Load SP from PCB 2 a Code | |Load sP from pcs 2 Code Load 5P from PC8 2
P y - Renove local variables
Switch- o Pop registers
variables
| Registers

Code




Process 1

Architectures

Context switch
Dispaicher
Push registers Process 2
Declare local variables

Architectures

Processor Architectures
SIMD ALU units

Provides the facility to apply the sam
struction to multiple data concurrently.
Also referred to as “vector units”.

Examples: Altivec, MMX, SSE[2[3}4],
s specialized compilers

gramming languages with
implicit concurrency.

GPU processing

Graphics processor as a vector unit.
v Unifying architecture languages are

Architectures

Architectures

Vector Machines

. i
Vectorization NEON, SPU, AVX,

Translates into
CPU-level vector operal

1

: Vectors) return Vectors is

ctor (1);
Combined with
ing, loop unrolling and caching

is s fast as a single CPU will get. |

Architectures

Processor Architectures
Pipeline
o P

Some CPU actions are naturally sequential
g instructi to be first loadec
decoded before they can be executed).

More fine gr
instructions into micro code.
v Overlapping those sequences in time
will lead to the concept of pipelines.
v Same latency, yet higher throughput.
) branches

might break the pipelines
& Branch predictors become essential.

Architectures

Processor Architectures
Hyper-threading

Emulates multiple virtual CPU cores

Register sets

Sequencer

Flags

Interrupt logic

while keeping the “expensive” resources
ALU central

Examples: Intel Pentium 4, Core i5/i7,
Atom, Sun UltraSPARC T2 (8 threads per core)

Architectures

Alternative Processor Architectures: Parallax Propeller (2006)

No interrupts!

Architectures

Vector Machines

Vectorization

/a-x
(d "‘)
a-z Function is

“promoted”
100000000, oy
1 [Ind
: real = 5.1,
: [Vector] re:

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

Architectures

Processor Architectures
Parallel pipelines

Filling parallel pipelines
alternating incoming commands between
pipelines) may employ multiple ALUS.
w (Conditional) branches might
again break the pipelin:
«= Interdependencies might limit
the degree of concurren
w= Same latency, yet even higher throughput.

« Compilers need to be aware of the options.

Architectures

Processor Architectures
Multi-core CPUs

Full replication of multiple CPU cores
on the same chip package.

+ Often combined with hyper-thread-
ing and/or multiple other means (as
introduced above) on each core.

* Cleanest and most explicit implementation
o ncurrency on the CPU level.

w= Requires synchronized atomic operations.
Requires programming languages with
implicit or explicit concurrency.

Historically the introduction of multi-core
CPUs ended the “GHz race” in the early 2000s.

8 cores for specializ
bandwidth floating point
ations and 1.
e

= eAbit
| powerPC 02

=3 Architectures

Vector Machines

Reduction

X2) N (¥

(for all i in
R |
Translates into
CPU-level vector operations |
A-chain is evaluated lazy sequentially.

Architectures

Processor Architectures

Out of order execution
Breaking the sequence inside each pipe-
line leads to ' CPU de
w Replace pipelines with hardware sches
ults need to be
-sequentialized” or possibly discarded.
“Conditional branch prediction” executes
the most likely branch or multiple branches.

1= Works better if the presented code
sequence has more independent
instructions and fewer conditional branches.

code optimization to be fully utilized.

o This hardware will require (extensive)
ne ¥

Data managemer

Architectures
Processor Architectures
Virtual memory
Translates logical memory addresses

into physical memory addre:
and provides memory protection features.

* Does not introdu ncurrency by itself.
Is still essential for concurrent programming
as hardware memory protection
guarantees memory integrity for
individual processes / threads.

Virtual memory

Physical memory.

Architectures
Multi-CPU systems
Scaling up:

* Multi-CPU on the same memory

multiple CPUs on same moth
ory bus, e.g. servers, workstations

Multi-CPU with high-speed interconnects
various supercomputer architectures, e.g. Cray XE6:

12-core AMD Opteron, up to 192 per cabinet (2304 cores)
« 3D torus interconnect (160GB/sec cap-

city, 48 ports per node)

“luster computer (Multi-CPU over network)
multiple computers connected by network interface,

on Cluster at ANU
24GB RAM

Architectures

Vector Machines

Reduction
:(X1:Xl) A 7y A 'Z‘l:ZZ)

loo00eace]s perations are
-2 ¢ Lindexd . evaluated in a concurrent
et T T divide-and-conquer
) - (binary tree) structure.
- | Translates into CPU-level vector operations |
e as well as multi-core or
T | tributed operations




Architectures

Vector Machines
General Data-parallelism

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

e

const Mask : [1..3, 1 .. 3] real = ((9, -1, 0), (-1, 5, -1), (0, -1, @));
proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask * P [i -1 .. i+1,3-1..3+11);})

i - i

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

Architectures

What is an operating system?

1. A virtual machine!

... offering a more comfortable and safer environment

Hardware Hardware Hardware

eral Typ. real-time system

ronment

Architectures

The evolution of communication systems
* 1901: first wireless data transmission (Morse-code from ships to shore)
« 56 first transmission of data through phone-lines
first transmission of data via satellites (Telstar)
* '69: ARPA-net (predecessor of the current internet)
« 80s: introduction of fast local networks (LANs): ethernet, token-ring
+ 90s: mass introduction of wireless networks (LAN and WAN)

Current standard consumer computers might come with:
« High speed network connectors (e.g. GB-Ethernet)
« Wireless LAN (e.g. IEEE802.11g, ...)
+ Local device bus-system (e.g. Firewire 800, Fibre Channel or USB 3.0)
« Wireless local device network (e.g. Bluetooth)
« Infrared communication (e.g. IrDA)
+ Modem/ADSL

Architectures

Types of current operating systems

Real-time operating systems

Fast context switches?
Small size?

Quick response to external interrupts?
Multitasking?

‘low level’ programming interfaces?
Interprocess communication tools?
High processor utilization?

=32

Architectures

Vector Machines

P
=~/

Cellular automaton transitions from a state  into the next state
. /e r—

- eV € : - "= (,)ieallcellsof astate
transition concurrently into new cells by following a rule

General Data-parallelism

Next_State = forall World_Indices in World do Rule (State, World_Indices);

John Conway's Game of Life rule:
proc Rule (S, (i, i) index (World)) : Cell {
const Population : index ({@ .. 9}) =
+ reduce Count (Cell.Alive, S [i - 1
return (if Population El
|| (Population 4 88 S [i, j] == Cell.Alive) then Cell.Alive
else Cell.Dead);

Architectures

Architectures

Architectures

Operating Systems

What is an operating system?

Architectures

What is an operating system?

2. A resource manager!

... coordinating access to hardware resources

il
=3 Architectures

Types of current operating systems
Personal computing systems, workstations, and workgroup servers:

late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (M$-DOS)

= last 20 years: evolving and expanding into current general purpose OSs, like for instace:
« Solaris (based on SVR4, BSD, and SunOS)
 LINUX (open source UNIX re-implementation for x86 processors and others)
« current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
+ MacOS X (Mach kernel with BSD Unix and a proprietary user-interface)

Multiprocessing is supported by all these OSs to some extent.
None of these OSs are suitable for embedded systems, although trials have been performed

None of these OSs are suitable for distributed or real-time systems.

=3 Architectures

Types of current operating systems

Real-time operating systems

What is an operating system?

2. A resource manager!

.. coordinating access to hardware resources
Operating systems deal with

processors
memory

mass storage
communication channels

devices (timers, special purpose processors, peripheral hardware,

Architectures

Types of current operating systems

Parallel operating systems
« support for a large number of processors, either:

+ symmetrical: each CPU has a full copy of the operating system
or

+ asymmetrical: only one CPU carries the full operating system, the others are
k

operated by small operating system stubs to transfer code or tasks.

=3 Architectures

Types of current operating systems

Real-time operating systems need to provide...
& the logical correctness of the results as well as
e the correctness of the time, when the results are delivered

w Predictability! (not performance!)

e All results are to be delivered just-in-time - not too early, not too late.

Timing constraints are specified in many different ways
. often as a response to ‘external’ events
v reactive systems

What is an operating system?

1. A virtual machine!

... offering a more comfortable and safer environment

(e.g. memory protection, hardware abstraction, multitasking,

Architectures

The evolution of operating systems

« in the beginning; single user, single program, single task, serial processing - no OS
« 50s: System monitors / batch processing
& the monitor ordered the sequence of jobs and triggered their sequential execution
« 505-60s: Advanced system monitors / batch processing
= the monitor is handling interrupts and timers
& first support for memory protection
w first implementations of privileged instructions (accessible by the monitor only).
« early 60s: Multiprogramming systems:
w employ the long device /0 delays for switches to other, runable programs
« early 60s: Multiprogramming, time-sharing systems:
w assign time-slices to each program and switch regularly
« early 70s: Multitasking systems — multiple developments resulting in UNIX (besides others)
« early 80s: single user, single tasking systems, with emphasis on user interface or APIs.
MS-DOS, CP/M, MacO$ and others first employed ‘small scale’ CPUs (personal computers)
« mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

Architectures

Types of current operating systems

Distributed operating systems

« all CPUs carry a small kernel operating system for communication services.
all other OS-services are distributed over available CPUs
services may migrate
services can be multiplied in order to
« guarantee availability (hot stand-by)
« ortoincrease throughput (heavy duty servers)

Architectures

Types of current operating systems

Embedded operating systems

usually real-time systems, often hard real-time systems
very small footprint (often a few KBs)
none or limited user-interaction

90-95% of all processors are working here!
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What is an operating system?

Is there a standard set of features for operating systems?

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

wr almost:

memory process inter-process

will be considered essential in most systems

Is there always an explicit operating system?

Architectures

Typical structures of operating systems

Monolithic
(or ‘the big mess...)

non-portable

hard to maintain

lacks reliability

all services are in the kernel (on the same privilege level)

= but: may reach high efficiency

Monolithic

e.g. most early UNIX systems,
MS-DOS (80s), Windows (all non-NT based versions)
MacOS (until version 9), and many others...

1
a

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

=
e

Architectures

What is an operating system?
Is there a standard set of features for operating systems?
w no:
the term ‘operating system’ covers 4kB microkernels,
as well as > 1GB installations of desktop general purpose operating systems.
Is there a minimal set of features?

almost:

memory process d inter-process

will be considered essential in most systems

Is there always an explicit operating system?

no:

some languages and development systems operate with standalone runtime environments

Architectures

Architectures

Typical structures of operating systems

pKernels & client-server models
pkernel implements essential process,
memory, and message handling
all‘higher’ services are user level servers

significantly easier to maintain

kernel ensures reliable message passing ardware

between clients and servers
highly modular and flexible
servers can be redundant and easily replaced

possibly reduced efficiency through
increased communications

e.g. current research projects, L4, etc.

Typical structures of operating systems

Monolithic & Modular

+ Modules can be platform independent

+ Easier to maintain and to develop

« Reliability is increased

« allservices are still in the kernel (on the same privilege level)

= may reach high efficiency
Modular

e.g. current Linux versions

Architectures

Typical structures of operating systems

pKernels & client-server models
pkernel implements essential process,
memory, and message handling
all‘higher’ services are user level servers
significantly easier to maintain

kernel ensures reliable message passing
between clients and servers:
locally and through a network

highly modular and flexible
servers can be redundant and easily replaced

possibly reduced efficiency through increased communications

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

& no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

|
|

Architectures

Typical features of operating systems
Process management:

* Context switch
« Scheduling
+ Book keeping (creation, states, cleanup)

& context switch:

w needs to...

« ‘remove’ one process from the CPU while preserving its state
« choose another process (scheduling)

« ‘insert’ the new process into the CPU, restoring the CPU state

Some CPUs have hardware support for context switching, otherwise:
w use interrupt mechanism

Architectures

Typical structures of operating systems

Monolithic & layered

easily portable

significantly easier to maintain

crashing layers do not necessarily stop the whole OS
possibly reduced efficiency through many interfaces
rigorous implementation of the stacked virtual machine

perspective on OSs

Layered

e.g.some current UNIX implementations (e.g. Solaris) to a certain de-
gree, many research OSs (e.g. ‘THE system, Dijkstra ‘68)

Architectures

UNIX

UNIX features

Hierarchical file-system (maintained via‘mount’ and ‘unmount’)
Universal file-interface applied to files, devices (1/0), as well as IPC
Dynamic process creation via duplication
Choice of shells
Internal structure as well as all APIs are based on ‘C’
Relatively high degree of portability
s UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix, Mach,

Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux, OPEN-
STEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS, ......

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

 no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

- almost:

memory process d i

will be considered essential in most systems

Architectures

Typical features of operating systems

Memory management:
Allocation / Deallocation
Virtual memory: logical vs. physical addresses, segments, paging, swapping, etc
Memory protection (privilege levels, separate virtual memory segments, ...)
Shared memory

Synchronisation / Inter-process communication
« semaphores, mutexes, cond. variables, channels, mailboxes, MPI, etc. (chapter 4)
& tightly coupled to scheduling / task switching!

Hardware abstraction
* Device drivers
o API
« Protocols, file systems, networking, everything else.

Architectures

Typical structures of operating systems

pKernels & virtual machines

pkernel implements essential process,
memory, and message handling

all ‘higher’ services are dealt with outside the

kernel = no threat for the kernel stability APls L AP |
significantly easier to maintain —
multiple OSs can be executed [

at the same time

kerne i highly hardware dependent

only the pkernel needs to be ported.

possibly reduced efficiency through

increased communications

e.g. wide spread concept: as early as the CP/M, VM/370 (79)
or as recent as MacOS X (mach kernel + BSD unix),

Architectures

UNIX

Dynamic process creation
pid = fork ();
resulting a duplication of the current process

returning 0 to the newly created process

returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure
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UNIX UNIX UNIX UNIX

Architectures Architectures

Synchronization in UNIX = Signals Message passing in UNI Pipes Processes & IPC in UNIX
int data_pip Processes:
A N { // parent
#include (data_pipe [01);
#include <sys/types.h> ) h tehar (0) > 0) {
g 0 to the newly created process #include <signal.h>

Dynamic process ¢
pid = fork ();
« Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

sulting a duplication of the current process
g2 dup P & inefficient, but can generate new tasks out of any user process - no shared memory!

catch_stop); O=0/ Signals:
(data_pipe [11); « limited information content, no buffering, no timing assurances (signals are not interrupts!)
void catch_stop (int hile ((

« returning the process id of the child process to the creating process (the ‘parent’ pr pid_t id;
or -1 for a failure
Frequent usage: e ((re (data.pipe 11 e very b not very powerful form of synchronisation
if ( 0 =10 { (data_pipe . )
/ the child’s task . 2 putchar (c exit (; Pipes:

« unstructured byte-stream communication, access is identical to file operations

if (re = -1) ( " & not sufficient to design client-server architectures or network communications
perror (“pipe broken“); (data_pipe [11);

s task .. ) lose (data_pipe [01); ex

/+ wait for the ter (data_pine [0D); oxit (0

Architectures

UNIX POSIX

Architectures Architectures

Architectures

POSIX - some of the relevant standard. POSIX - 1003.1b/c

Sockets in BSD UNIX

m of a universal file interface for everything and in

g. UDP/IP):

Connec

 Server -

* Client sids

Architectures
Summary

Architectures

* Hardware architectures - from simple logic to supercomputers
+ logic, CPU architecture, pipelines, out-of-order execution, multithreading,

* Data-Parallelism
« Vectorization, Reduction, General data-parallelism

* Concurrency in languages
« Some examples: Haskell, Occam, Chapel

* Operating systems

* Structures: monolithic, modular, layered, pkern
« UNIX, POSIX

Portable Operating System Interface for Unix

IEEE/ANSI Std 1003.1 and following.

Library Interface (API)

[C Language calling conventions — types exit mostly in terms of
(open) lists of pointers and integers with overloaded meanings].

More than 30 different POSIX standards (and growing / changing).

5 a system is‘POSIX compliant, if it implements parts of one of them!

& a system is 100% POSIX compliant) if it implements one of them!

0031,
1053

10031
0

10021
-

m tealime signals, priortyschedulng,timers, asynchronous O, prioritized 0, 5
Rl 110, ile sync, mapped files, memory locking, memory protection, mes-
EXIENsions age passing, semaphor

it | new process create semantics (spawn), sporadic server scheduling, execution time
O 2R e (orink ofpecestes il et adsil O aisony itk sy Umeensid o Hlocks
SRS s, G e i) ot i

D T —
time Extensions 10cks i locks, and persistent otification for message queues

buifer management, send control blocks, asynchronous and synchronous of
ations, bounded blocking, message priorities, message labels, and implementation
protocols

istributed
Real-time

Frequently employed POSIX features inc

* Threads: a common interface to threading - differences to ‘classical UNIX processes

® Timers: delivery is accomplished using POSIX signals

o Priority scheduling: fixed priority, 32 priority levels
 Real-time signals: signals with multiple levels of priority
¢ Semaphore: named semaphore

* Memory queues:

 Shared memor:
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Summary

Summary

Non-Determinism

* Selective a
* Selective calls
* Correctness of non-deterministic program:
urces of non-determinism
* Predicates & invariants

Summary
Summary
Distributed Systems

¢ Networks

Distributed systems
Elections
Distributed states, consistent snapshots
Distributed servers (replicates, distributed processing, distributed commits)

Transactions (ACID properties, serializable interleavings, transaction schedulers)

== Summary

Summary

Concurrency - The Basic Concepts
* Forms of concurrency
* Models and terminology

« Abstractions and perspectives: computer science, physics & engineering
+ Observations: non-determinism, atomicity, interaction, interleaving
rrectness in concurrent systems

 Processes and threads

« Basic concepts and notions
. Pro s

 Concurrent programming language:

« Explicit concurrency: e.g. Ada, Chapel

« Implicit conc : functional programming - e.g. Haskell, Caml

Summary

Summary

Data Parallelism

* Data-Parallelism
« Vectorization
* Reduction
« General data-parallelism

¢ Examples
* Image processing
« Cellular automata

Summary

Summary

Architectures

* Hardware architectures - from simple logic to supercomputers
« logic, CPU architecture, pipelines, out-of-order execution, multithreading, ..

¢ Data-Parallelism

« Vectorization, Reduction, General data-parallelism

* Concurrency in languages

+ Some examples: Haskell, Occam, Chapel

 Operating systems
+ Structures: monolithic, modular, layered, pkernels
* UNIX, POSIX

Summary

Summary
Mutual Exclusion

* Definition of mutual exclusion

 Atomic load and atomic store operations
s ical errors
+ Decker's algorithm, Peterson's algorithm
« Bakery algorithm

* Realistic hardware support

* Atomic test-and-set, Atomic exchanges, Memory cell reservations

¢ Semaphores
« Basic semaphore definition
+ Operating systems style semaphores

Summary

Summary

Scheduling

* Basic performance scheduling
* Motivation &
* Level

+ Evaluation of performance and selection of appropriate methods

Towards predictable scheduling

+ Motivation & Terms
« Categories & Examples

Summary

Exam preparations

Helpful

ish central aspects from excursions, examples & implementations.

Gain full understanding of all central as|

Be able to categorize any given example under a general theme discussed in the lecture.
Explain to and discuss the topics with other (preferably bett ents.

Try whether you can connect aspects from different parts of the lecture.

Not helpful

Remembering the slides word by word.

Learn the Ch Posix/ Occa s reference manual page by

Summary

Summary

Communication & Synchronization

 Shared memory based synchronization

« Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.
* Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.

« Synchronization and object orientation, blocking operations and re-queuing.

Message based synchronization

« Synchronization models

« Examples

Summary

Summary

Safety & Liveness

* Liveness
« Fairness
* Safety
« Deadlock detection

* Deadlock avoidance
« Deadlock prevention

¢ Atomic & Idempotent operations
« Definitions & implications

* Failure modes

« Definitions, fault sources and basic fault tolerance
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